CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field |
Hua-Dong Zeng(曾华东)1, Zhi-Yang Zhu(祝志阳)1, Ji-Dong Zhang(张吉东)2, Xin-Lu Cheng(程新路)1,3 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 Key Laboratory of Ecophysics and Department of Physics, School of Science, Shihezi University, Shihezi 832003, China; 3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China |
|
|
Abstract The diffusion and thermite reaction process of Al/NiO nanothermite composed of Al nanofilm and NiO nano honeycomb are investigated by molecular dynamics simulations in combination with the ReaxFF. The diffusion and thermite reaction are characterized by measuring energy release, adiabatic reaction temperature, and activation energy. Based on time evolution of atomic configuration and mean square displacement, the initialization of the thermite reaction process of Al/NiO nanothermite results from the diffusion of Al atoms. Under the microcanonical ensemble, it is found that the adiabatic reaction temperature of the thermite reaction process of Al/NiO nanothermite reaches over 5500 K, and activation energy is 8.43 kJ/mol. The release energy of the thermite reaction process of Al/NiO nanothermite is 2.2 kJ/g, which is in accordance with the available experimental value. With the same initial temperature, the adiabatic reaction temperature of the thermite reaction process of Al/NiO nanothermite has a tendency to decrease dramatically as the equivalence ratio increases. On the basis of chemical bond analysis, the initial temperature and equivalence ratio have great effects on the thermite reaction process, but do not significantly affect the average length of Al-Ni nor Al-O bond. Overall, the thermite reaction of film-honeycomb Al/NiO nanothermite is a complicated process instead of a theoretical equation.
|
Received: 28 December 2016
Revised: 21 February 2017
Accepted manuscript online:
|
PACS:
|
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
52.65.Yy
|
(Molecular dynamics methods)
|
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217 and 21363019). |
Corresponding Authors:
Xin-Lu Cheng
E-mail: chengxl@scu.edu.cn
|
Cite this article:
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路) Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field 2017 Chin. Phys. B 26 056101
|
[1] |
Park K, Lee D, Rai A, Mukherjee D and Zachariah M R 2005 J. Phys. Chem. B 109 7290
|
[2] |
Granier J J and Pantoya M L 2004 Combust. Flame 138 373
|
[3] |
Pantoya M L and Granier J J 2006 J. Therm. Anal. Cal. 85 37
|
[4] |
Wang H Y, Jian G Q, Egan G C and Zachariah M R 2014 Combust. Flame 161 2203
|
[5] |
Cervantes O G, Kuntz G C, Gash A E and Munir Z A 2011 Combust. Flame 158 117
|
[6] |
Shin M S, Kim J K, Kim J W, Moraes C A M, Kim H S and Koo K K 2012 J. Ind. Eng. Chem. 18 1768
|
[7] |
Seo H S, Kim J K, Kim J W, Kim H S and Koo K K 2014 J. Ind. Eng. Chem. 20 189
|
[8] |
Glavier L, Taton G, Ducéré J M, Baijot V, Pinon S, Calais T, Estéve A, Rouhani M D and Rossi C 2015 Combust. Flame 162 1813
|
[9] |
Jacob R J, Jian G, Guerieri P M and Zachariah M R 2015 Combust. Flame 162 258
|
[10] |
Qiao Z, Shen J, Wang J, Huang B, Yang Z, Yang G and Zhang K 2015 Compos. Sci. Technol. 107 113
|
[11] |
Williams R A, Schoenitz M, Ermoline A and Dreizin E L 2014 Thermochim. Acta 594 1
|
[12] |
Zhang K, Rossi C, Rodriguez G A A, Tenailleau C and Alphonse P 2007 Appl. Phys. Lett. 91 113117
|
[13] |
Bahrami M, Taton G, Conédéra V, Salvagnac L, Tenailleau C, Alphonse P and Rossi C 2014 Propell. Explos. Pyrot. 39 365
|
[14] |
Kim D K, Bae J H, Kang M K and Kim H J 2011 Curr. Appl. Phys. 11 1067
|
[15] |
Bohlouli-Zanjani G, Wen J Z, Hu A, Persic J, Ringuette S and Zhou Y N 2013 Thermochim. Acta 572 51
|
[16] |
Xu D G, Yang Y, Cheng H, Li Y Y and Zhang K L 2012 Combust. Flame 159 2202
|
[17] |
Cheng J L, Hng H H, Lee Y W, Du S W and Thadhani N N 2010 Combust. Flame 157 2241
|
[18] |
Zhang K L, Rossi C, Alphonse P, Tenailleau C, Cayez S and Chane-Ching J Y 2009 Appl. Phys. A 94 957
|
[19] |
Levitas V I, Asay B W, Son S F and Pantoya M 2006 Appl. Phys. Lett. 89 071909
|
[20] |
Levitas V I, Pantoya M L and Dikici B 2008 Appl. Phys. Lett. 92 011921
|
[21] |
Rai A, Park K, Zhou L and Zachariah M R 2006 Combust. Theor. Model. 10 843
|
[22] |
Chowdhury S, Sullivan K, Piekiel N, Zhou L and Zachariah M R 2010 J. Phys. Chem. C 114 9191
|
[23] |
Henz B J, Hawa T and Zachariah M R 2010 J. Appl. Phys. 107 024901
|
[24] |
Tomar V and Zhou M 2006 Phys. Rev. B 73 174116
|
[25] |
Tomar V and Zhou M 2007 J. Mech. Phys. Solids 55 1053
|
[26] |
Shimojo F, Nakano A, Kalia R K and Vashishta P 2008 Phys. Rev. E 77 066103
|
[27] |
Shimojo F, Kalia R K, Nakano A, Nomura K and Vashishta P 2008 J. Phys.: Condens Mat. 20 294204
|
[28] |
Shimojo F, Nakano A, Kalia R K and Vashishta P 2009 Appl. Phys. Lett. 95 043114
|
[29] |
Farley C W, Pantoya M L, Losada M and Chaudhuri S 2013 J. Chem. Phys. 139 074701
|
[30] |
Levchenko E V, Evteev A V, Riley D P, Belova I V and Murch G E 2010 Comp. Mater. Sci. 47 712
|
[31] |
Song P X and Wen D S 2010 J. Phys. Chem. C 114 8688
|
[32] |
Nguyen N H, Hu A, Persic J and Wen J Z 2011 Chem. Phys. Lett. 503 112
|
[33] |
Wen J Z, Nguyen N H, Rawlins J, Petre C F and Ringuette S 2014 J. Nanopart. Res. 16 2486
|
[34] |
Zhang J P, Zhang Y Y, Wang E P, Tang C M, Cheng X L and Zhang Q H 2016 Chin. Phys. B 25 036102
|
[35] |
Matteazzi P and Le Caer G 1992 J. Am. Ceram. Soc. 75 2749
|
[36] |
Udhayabanu V, Singh N and Murty B S 2010 J. Alloy. Compd. 497 142
|
[37] |
Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A M, Nguyen N H, Persic J, Petre C F and Zhou Y N 2013 Nanoscale Res. Lett. 8 184
|
[38] |
Liu T, Chen X, Xu H X, Han A J, Ye M Q and Pan G P 2015 Propell. Explos. Pyrot. 40 873
|
[39] |
Zhang K, Rossi C, Alphonse P and Tenailleau C 2008 J. Nanosci. Nanotechnol. 8 5903
|
[40] |
Fischer S H and Grubelich M C 1998 The 24rm th International Pyrotechnics Seminar, July Monterey CA SAND-98-1176C
|
[41] |
Yu C P, Zhang W C, Shen R Q, Xu X, Cheng J, Ye J H, Qin Z C and Chao Y M 2016 Mater. Desgin 110 304
|
[42] |
Zhang D and Li X 2015 J. Phys. Chem. A 119 4688
|
[43] |
Zhang Q C, Yang X H, Li P, Huang G Y, Feng S S, Shen C, Han B, Zhang X H, Jin F, Xu F and Lu T J 2015 Prog. Mater. Sci. 74 332
|
[44] |
Chenoweth K, van Duin A C T and Goddard W A III 2008 J. Phys. Chem. A 112 1040
|
[45] |
Chenoweth K, van Duin A C T, Dasgupta S and Goddard W A III 2009 J. Phys. Chem. A 113 1740
|
[46] |
Shin Y K, Kwak H, Zou C, Vasenkov A V and van Duin A C T 2012 J. Phys. Chem. A 116 12163
|
[47] |
Zhu Z Y, Ma B, Tang C M and Cheng X L 2016 Phys. Lett. A 380 194
|
[48] |
Hoover W G 1985 Phys. Rev. A 31 1695
|
[49] |
Singh S, Singh G, Kulkarni N, Mathe V L and Bhoraskar S V 2015 J. Therm. Anal. Calorim. 119 309
|
[50] |
Valliappan S, Swiatkiewicz J and Puszynski J A 2005 Pow. Tech. 156 164
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|