Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 056101    DOI: 10.1088/1674-1056/26/5/056101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field

Hua-Dong Zeng(曾华东)1, Zhi-Yang Zhu(祝志阳)1, Ji-Dong Zhang(张吉东)2, Xin-Lu Cheng(程新路)1,3
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of Ecophysics and Department of Physics, School of Science, Shihezi University, Shihezi 832003, China;
3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
Abstract  The diffusion and thermite reaction process of Al/NiO nanothermite composed of Al nanofilm and NiO nano honeycomb are investigated by molecular dynamics simulations in combination with the ReaxFF. The diffusion and thermite reaction are characterized by measuring energy release, adiabatic reaction temperature, and activation energy. Based on time evolution of atomic configuration and mean square displacement, the initialization of the thermite reaction process of Al/NiO nanothermite results from the diffusion of Al atoms. Under the microcanonical ensemble, it is found that the adiabatic reaction temperature of the thermite reaction process of Al/NiO nanothermite reaches over 5500 K, and activation energy is 8.43 kJ/mol. The release energy of the thermite reaction process of Al/NiO nanothermite is 2.2 kJ/g, which is in accordance with the available experimental value. With the same initial temperature, the adiabatic reaction temperature of the thermite reaction process of Al/NiO nanothermite has a tendency to decrease dramatically as the equivalence ratio increases. On the basis of chemical bond analysis, the initial temperature and equivalence ratio have great effects on the thermite reaction process, but do not significantly affect the average length of Al-Ni nor Al-O bond. Overall, the thermite reaction of film-honeycomb Al/NiO nanothermite is a complicated process instead of a theoretical equation.
Keywords:  molecular dynamics simulations      adiabatic reaction temperature      release energy      mean square displacement  
Received:  28 December 2016      Revised:  21 February 2017      Accepted manuscript online: 
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  52.65.Yy (Molecular dynamics methods)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217 and 21363019).
Corresponding Authors:  Xin-Lu Cheng     E-mail:  chengxl@scu.edu.cn

Cite this article: 

Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路) Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field 2017 Chin. Phys. B 26 056101

[1] Park K, Lee D, Rai A, Mukherjee D and Zachariah M R 2005 J. Phys. Chem. B 109 7290
[2] Granier J J and Pantoya M L 2004 Combust. Flame 138 373
[3] Pantoya M L and Granier J J 2006 J. Therm. Anal. Cal. 85 37
[4] Wang H Y, Jian G Q, Egan G C and Zachariah M R 2014 Combust. Flame 161 2203
[5] Cervantes O G, Kuntz G C, Gash A E and Munir Z A 2011 Combust. Flame 158 117
[6] Shin M S, Kim J K, Kim J W, Moraes C A M, Kim H S and Koo K K 2012 J. Ind. Eng. Chem. 18 1768
[7] Seo H S, Kim J K, Kim J W, Kim H S and Koo K K 2014 J. Ind. Eng. Chem. 20 189
[8] Glavier L, Taton G, Ducéré J M, Baijot V, Pinon S, Calais T, Estéve A, Rouhani M D and Rossi C 2015 Combust. Flame 162 1813
[9] Jacob R J, Jian G, Guerieri P M and Zachariah M R 2015 Combust. Flame 162 258
[10] Qiao Z, Shen J, Wang J, Huang B, Yang Z, Yang G and Zhang K 2015 Compos. Sci. Technol. 107 113
[11] Williams R A, Schoenitz M, Ermoline A and Dreizin E L 2014 Thermochim. Acta 594 1
[12] Zhang K, Rossi C, Rodriguez G A A, Tenailleau C and Alphonse P 2007 Appl. Phys. Lett. 91 113117
[13] Bahrami M, Taton G, Conédéra V, Salvagnac L, Tenailleau C, Alphonse P and Rossi C 2014 Propell. Explos. Pyrot. 39 365
[14] Kim D K, Bae J H, Kang M K and Kim H J 2011 Curr. Appl. Phys. 11 1067
[15] Bohlouli-Zanjani G, Wen J Z, Hu A, Persic J, Ringuette S and Zhou Y N 2013 Thermochim. Acta 572 51
[16] Xu D G, Yang Y, Cheng H, Li Y Y and Zhang K L 2012 Combust. Flame 159 2202
[17] Cheng J L, Hng H H, Lee Y W, Du S W and Thadhani N N 2010 Combust. Flame 157 2241
[18] Zhang K L, Rossi C, Alphonse P, Tenailleau C, Cayez S and Chane-Ching J Y 2009 Appl. Phys. A 94 957
[19] Levitas V I, Asay B W, Son S F and Pantoya M 2006 Appl. Phys. Lett. 89 071909
[20] Levitas V I, Pantoya M L and Dikici B 2008 Appl. Phys. Lett. 92 011921
[21] Rai A, Park K, Zhou L and Zachariah M R 2006 Combust. Theor. Model. 10 843
[22] Chowdhury S, Sullivan K, Piekiel N, Zhou L and Zachariah M R 2010 J. Phys. Chem. C 114 9191
[23] Henz B J, Hawa T and Zachariah M R 2010 J. Appl. Phys. 107 024901
[24] Tomar V and Zhou M 2006 Phys. Rev. B 73 174116
[25] Tomar V and Zhou M 2007 J. Mech. Phys. Solids 55 1053
[26] Shimojo F, Nakano A, Kalia R K and Vashishta P 2008 Phys. Rev. E 77 066103
[27] Shimojo F, Kalia R K, Nakano A, Nomura K and Vashishta P 2008 J. Phys.: Condens Mat. 20 294204
[28] Shimojo F, Nakano A, Kalia R K and Vashishta P 2009 Appl. Phys. Lett. 95 043114
[29] Farley C W, Pantoya M L, Losada M and Chaudhuri S 2013 J. Chem. Phys. 139 074701
[30] Levchenko E V, Evteev A V, Riley D P, Belova I V and Murch G E 2010 Comp. Mater. Sci. 47 712
[31] Song P X and Wen D S 2010 J. Phys. Chem. C 114 8688
[32] Nguyen N H, Hu A, Persic J and Wen J Z 2011 Chem. Phys. Lett. 503 112
[33] Wen J Z, Nguyen N H, Rawlins J, Petre C F and Ringuette S 2014 J. Nanopart. Res. 16 2486
[34] Zhang J P, Zhang Y Y, Wang E P, Tang C M, Cheng X L and Zhang Q H 2016 Chin. Phys. B 25 036102
[35] Matteazzi P and Le Caer G 1992 J. Am. Ceram. Soc. 75 2749
[36] Udhayabanu V, Singh N and Murty B S 2010 J. Alloy. Compd. 497 142
[37] Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A M, Nguyen N H, Persic J, Petre C F and Zhou Y N 2013 Nanoscale Res. Lett. 8 184
[38] Liu T, Chen X, Xu H X, Han A J, Ye M Q and Pan G P 2015 Propell. Explos. Pyrot. 40 873
[39] Zhang K, Rossi C, Alphonse P and Tenailleau C 2008 J. Nanosci. Nanotechnol. 8 5903
[40] Fischer S H and Grubelich M C 1998 The 24rm th International Pyrotechnics Seminar, July Monterey CA SAND-98-1176C
[41] Yu C P, Zhang W C, Shen R Q, Xu X, Cheng J, Ye J H, Qin Z C and Chao Y M 2016 Mater. Desgin 110 304
[42] Zhang D and Li X 2015 J. Phys. Chem. A 119 4688
[43] Zhang Q C, Yang X H, Li P, Huang G Y, Feng S S, Shen C, Han B, Zhang X H, Jin F, Xu F and Lu T J 2015 Prog. Mater. Sci. 74 332
[44] Chenoweth K, van Duin A C T and Goddard W A III 2008 J. Phys. Chem. A 112 1040
[45] Chenoweth K, van Duin A C T, Dasgupta S and Goddard W A III 2009 J. Phys. Chem. A 113 1740
[46] Shin Y K, Kwak H, Zou C, Vasenkov A V and van Duin A C T 2012 J. Phys. Chem. A 116 12163
[47] Zhu Z Y, Ma B, Tang C M and Cheng X L 2016 Phys. Lett. A 380 194
[48] Hoover W G 1985 Phys. Rev. A 31 1695
[49] Singh S, Singh G, Kulkarni N, Mathe V L and Bhoraskar S V 2015 J. Therm. Anal. Calorim. 119 309
[50] Valliappan S, Swiatkiewicz J and Puszynski J A 2005 Pow. Tech. 156 164
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[3] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[4] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[5] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[6] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[7] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[8] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[9] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[10] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[11] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[12] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[13] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[14] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
[15] Nano watermill driven by revolving charge
Zhou Xiao-Yan (周晓艳), Kou Jian-Long (寇建龙), Nie Xue-Chuan (聂雪川), Wu Feng-Min (吴锋民), Liu Yang (刘扬), Lu Hang-Jun (陆杭军). Chin. Phys. B, 2015, 24(7): 074702.
No Suggested Reading articles found!