Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 108702    DOI: 10.1088/1674-1056/abfb54
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA

Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明)
College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
Abstract  Cyanobacteria are the simplest organisms to have circadian clocks. The central oscillator in cyanobacteria is composed by a transcriptional/translational feedback loop (TTFL) and a post-translational oscillator (PTO). The PTO is a core pacemaker which consists of three proteins KaiA, KaiB and KaiC. KaiA stimulates the phosphorylation of KaiC, while KaiB inhibits the activity of KaiA. The cyanobacterial circadian clock is an interesting topic for researchers and many mathematical models have been constructed. However, the current mathematical models of the cyanobacterial circadian clock have been made only considering the interactions between Kai proteins. CikA, as an input pathway component, plays an essential role in the circadian clock, whose mutation results in abnormal rhythms. The regulation mechanism of CikA remains unclear. In this paper, we develop a detailed mathematical model for the cyanobacterial circadian clock with incorporation CikA-regulation. Based on numerical simulations, we explore the dynamic properties of the circadian clock regulated by CikA. The results show that the regulation of CikA makes the system more sensitive. In detail, CikA strengthens the central role of PTO and improves the adaptability of the circadian clock against the change of environment. With CikA, the system is able to modulate its period more easily to face environmental perturbation. CikA also enhances slightly the fitness of cyanobacteria. The findings of this paper can supplement the biological research and may help us more clearly understand the cyanobacterial circadian clock regulated by other proteins.
Keywords:  cyanobacterial circadian clock      mathematical model      adaptability      sensitivity analysis  
Received:  31 December 2020      Revised:  23 March 2021      Accepted manuscript online:  26 April 2021
PACS:  87.18.Yt (Circadian rhythms)  
  87.85.Tu (Modeling biomedical systems)  
  87.18.Vf (Systems biology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11672177).
Corresponding Authors:  Ying Li     E-mail:  leeliying@163.com

Cite this article: 

Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明) Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA 2021 Chin. Phys. B 30 108702

[1] Dunlap J C 1999 Cell 96 271
[2] Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson C R, Tanabe A, Golden S S, Johnson C H and Kondo T 1998 Science 281 1519
[3] Nishiwaki T, Iwasaki H, Ishiura M and Kondo T 2000 Proc. Natl. Acad. Sci. USA 97 495
[4] Iwasaki H and Kondo T 2004 J. Biol. Rhythms 19 436
[5] Qin X M, Byrne M, Xu Y, Mori T and Johnson C H 2010 PLoS Biol. 8 e1000394
[6] Iwasaki H, Nishiwaki T, Kitayama Y, Nakajima M and Kondo T 2002 Proc. Natl. Acad. Sci. USA 99 15788
[7] Takigawaimamura H and Mochizuki A 2006 J. Theor. Biol. 241 178
[8] Nakajima M, Imai K, Ito H, Nishiwaki T and Murayama Y 2010 Science 308 414
[9] Akiyama S, Nohara A, Ito K and Maeda Y 2008 Mol. Cell 29 703
[10] Boyd J S, Bordowitz J R, Bree A C and Golden S S 2013 Proc. Natl. Acad. Sci. USA 110 13950
[11] Li Y, Zhang G K and Song Z G 2020 Chin. Phys. B 29 098703
[12] Gutu A and O'Shea E K 2013 Mol. Cell 50 288
[13] Tseng R, Goularte N F, Chavan A, Jansen L, Cohen S E, Chang Y G, Heisler J, Sheng L, Michael A K, Tripathi S, Golden S S, Andy L W and Partch C L 2017 Science 355 1174
[14] Kaur M, Ng A, Kim P, Diekman C and Kim Y I 2019 J. Biol. Rhythms 34 218
[15] Rust M J, Golden S S and Shea E K O 2011 Science 331 220
[16] Li Y and Liu Z 2014 Int. J. Bifurcat. Chaos 24 3367
[17] Li Y and Liu Z 2016 Physica A 457 62
[18] Gu C G, Wang P and Yang H J 2019 Chin. Phys. B 28 018701
[19] Kitayama Y, Iwasaki H, Nishiwaki T and Kondo T 2003 EMBO J. 22 2127
[20] Mochizuki A 2005 J. Theor. Biol. 236 291
[21] Kageyama H, Nishiwaki T, Nakajima M, Iwasaki H, Oyama T and Kondo T 2006 Mol. Cell 23 161
[22] Stelling J, Gilles E D and Doyle Ⅲ F J. 2004 Proc. Natl. Acad. Sci. USA 101 13210
[23] Wright K P J, McHill A W, Birks B R, Griffin B R, Rusterholz T and Chinoy E D 2013 Curr. Biol. 23 1554
[24] Aschoff J, Hoffmann K and Wever R 1975 Chronobiologia 2 23
[25] Jewett M E, Kronauer R E and Czeisler C A 1991 Nature 350 59
[26] Hellweger F L 1995 Ecol. Model 221 1620
[27] Wirz-Justice A, Graw P, Krauchi K, Gisin B, Jochum A, Arendt J, Fisch H U, Buddeberg C and Poldinger W 1993 Arch Gen Psychiat 50 929
[28] Dijk D J, Boulos Z, Eastman C I, Lewy A J, Campbell S S and Terman M 1995 J. Biol. Rhythms 10 113
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[3] Entrainment mechanism of the cyanobacterial circadian clock induced by oxidized quinone
Ying Li(李莹), Guang-Kun Zhang(张广鹍), Zi-Gen Song(宋自根). Chin. Phys. B, 2020, 29(9): 098703.
[4] Quantitative modeling of bacterial quorum sensing dynamics in time and space
Xiang Li(李翔), Hong Qi(祁宏), Xiao-Cui Zhang(张晓翠), Fei Xu(徐飞), Zhi-Yong Yin(尹智勇), Shi-Yang Huang(黄世阳), Zhao-Shou Wang(王兆守)†, and Jian-Wei Shuai(帅建伟)‡. Chin. Phys. B, 2020, 29(10): 108702.
[5] Dynamically tunable terahertz passband filter based on metamaterials integrated with a graphene middle layer
MaoSheng Yang(杨茂生), LanJu Liang(梁兰菊), DeQuan Wei(韦德泉), Zhang Zhang(张璋), Xin Yan(闫昕), Meng Wang(王猛), JianQuan Yao(姚建铨). Chin. Phys. B, 2018, 27(9): 098101.
[6] Investigation of the thermal adaptability for a mobile cold atom gravimeter
Qi-Yu Wang(王启宇), Zhao-Ying Wang(王兆英), Zhi-Jie Fu(付志杰), Qiang Lin(林强). Chin. Phys. B, 2016, 25(12): 123701.
[7] Structure-dependent behaviors of diode-triggered silicon controlled rectifier under electrostatic discharge stress
Li-Zhong Zhang(张立忠), Yuan Wang(王源), Yan-Dong He(何燕冬). Chin. Phys. B, 2016, 25(12): 128501.
[8] Mathematical modelling of gain-switched RF-excited CO2 waveguide laser
Hussain Badran (巴德), Tian Zhao-Shuo (田兆硕), Wang Qi (王骐). Chin. Phys. B, 2004, 13(4): 501-504.
No Suggested Reading articles found!