CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Localized electric-field-enhanced low-light detection by a 2D SnS visible-light photodetector |
Hao Wen(文豪), Li Xiong(熊力), Congbing Tan(谭丛兵)‡, Kaimin Zhu(朱凯民), Yong Tang(唐勇), Jinbin Wang(王金斌)§, and Xiangli Zhong(钟向丽)¶ |
School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China |
|
|
Abstract Due to their excellent carrier mobility, high absorption coefficient and narrow bandgap, most 2D IVA metal chalcogenide semiconductors (GIVMCs, metal = Ge, Sn, Pb;chalcogen = S, Se) are regarded as promising candidates for realizing high-performance photodetectors. We synthesized high-quality two-dimensional (2D) tin sulfide (SnS) nanosheets using the physical vapor deposition (PVD) method and fabricated a 2D SnS visible-light photodetector. The photodetector exhibits a high photoresponsivity of 161 A·W-1 and possesses an external quantum efficiency of 4.45×104%, as well as a detectivity of 1.15×109 Jones under 450 nm blue light illumination. Moreover, under poor illumination at optical densities down to 2 mW·cm-2, the responsivity of the device is higher than that at stronger optical densities. We suggest that a photogating effect in the 2D SnS photodetector is mainly responsible for its low-light responsivity. Defects and impurities in 2D SnS can trap carriers and form localized electric fields, which can delay the recombination process of electron-hole pairs, prolong carrier lifetimes, and thus improve the low-light responsivity. This work provides design strategies for detecting low levels of light using photodetectors made of 2D materials.
|
Received: 10 October 2020
Revised: 29 November 2020
Accepted manuscript online: 04 January 2021
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 1872251 and 11875229). |
Corresponding Authors:
Congbing Tan, Jinbin Wang, Xiangli Zhong
E-mail: cbtan@xtu.edu.cn;jbwang@xtu.edu.cn;xlzhong@xtu.edu.cn
|
Cite this article:
Hao Wen(文豪), Li Xiong(熊力), Congbing Tan(谭丛兵), Kaimin Zhu(朱凯民), Yong Tang(唐勇), Jinbin Wang(王金斌), and Xiangli Zhong(钟向丽) Localized electric-field-enhanced low-light detection by a 2D SnS visible-light photodetector 2021 Chin. Phys. B 30 057803
|
[1] Lim Y R, Song W, Han J K, Lee Y B, Kim S J, Myung S, Lee S S, An K S, Choi C J and Lim J 2016 Adv. Mater. 28 5025 [2] Fang H, Hu W, Wang P, Guo N, Luo W, Zheng D, Gong F, Luo M, Tian H, Zhang X, Luo C, Wu X, Chen P, Liao L, Pan A, Chen X and Lu W 2016 Nano Lett. 16 6416 [3] Liu J, Ma Y Q, Dai Y W, Chen Y, Li Y, Tang Y N and Dai X Q 2019 Chin. Phys. B 28 107101 [4] Ai W, Hu X H, Pan L, Chen C C, Wang Y F and She X D 2019 Acta Phys. Sin. 68 197101 (in Chinese) [5] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439 [6] Wang H, Xu M and Zheng R K 2020 Acta Phys. Sin. 69 017301 (in Chinese) [7] Dong B, Yang T and Han Z 2020 Chin. Phys. B 29 097307 [8] Wang J and Hu W 2017 Chin. Phys. B 26 037106 [9] Wang F, Wang Z, Yin L, Cheng R, Wang J, Wen Y, Shifa T A, Wang F, Zhang Y, Zhan X and He J 2018 Chem. Soc. Rev. 47 6296 [10] Buscema M, Island J O, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S and Castellanos-Gomez A 2015 Chem. Soc. Rev. 44 3691 [11] Fang H and Hu W 2017 Adv. Sci. 4 1700323 [12] Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J and Li L J 2013 Adv. Mater. 25 3456 [13] Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, Mion T R, Wang X, Zhou J, Fu Q, Fan H J, Tay B K, Song L, He R H, Kloc C, Ajayan P M and Liu Z 2016 Adv. Funct. Mater. 26 1169 [14] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T and Xia F 2016 Nano Lett. 16 4648 [15] Fengnian X, Han W and Yichen J 2014 Nat. Commun. 5 1 [16] Fei R, Li W, Li J and Yang L 2015 Appl. Phys. Lett. 107 173104 [17] Xia J, Li X Z, Huang X, Mao N, Zhu D D, Wang L, Xu H and Meng X M 2016 Nanoscale 8 2063 [18] Steinmann V, Jaramillo R, Hartman K, Chakraborty R, Brandt R E, Poindexter J R, Lee Y S, Sun L, Polizzotti A, Park H H, Gordon R G and Buonassisi T 2014 Adv. Mater. 26 7488 [19] Sinsermsuksakul P, Hartman K, Bok Kim S, Heo J, Sun L, Hejin Park H, Chakraborty R, Buonassisi T and Gordon R G 2013 Appl. Phys. Lett. 102 053901 [20] Biacchi A J, Vaughn D D, 2nd and Schaak R E 2013 J. Am. Chem. Soc. 135 11634 [21] Deng Z, Cao D, He J, Lin S, Lindsay S M and Liu Y 2012 ACS Nano 6–7 6197 [22] Zhou X, Gan L, Zhang Q, Xiong X, Li H, Zhong Z, Han J and Zhai T 2016 J. Mater. Chem. C 4 2111 [23] Zhang Z, Yang J, Zhang K, Chen S, Mei F and Shen G 2017 J. Mater. Chem. C 5 11288 [24] Huang H, Wang J, Hu W, Liao L, Wang P, Wang X, Gong F, Chen Y, Wu G, Luo W, Shen H, Lin T, Sun J, Meng X, Chen X and Chu J 2016 Nanotechnology 27 445201 [25] Kim D, Lee R, Kim S and Kim T 2019 J. Alloys Compd. 789 960 [26] Liu J, Li X, Wang H, Yuan G, Suvorova A, Gain S, Ren Y and Lei W 2020 ACS Appl. Mater. Interfaces 12 31810 [27] Li J, Wang Z, Wen Y, Chu J, Yin L, Cheng R, Lei L, He P, Jiang C, Feng L and He J 2018 Adv. Funct. Mater. 28 1706437 [28] Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Richard L. Moore I and Yu B 2014 ACS Nano 8 514 [29] Zhou N, Gan L, Yang R, Wang F, Li L, Chen Y, Li D and Zhai T 2019 ACS Nano 13 6297 [30] Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J and Xie L 2015 ACS Nano 9 7450 [31] Liu X, Li Y, Zhou B, Wang X, Cartwright A N and Swihart M T 2014 Chem. Mater. 26 3515 [32] Chandrasekhar H R, Humphreys R G, Zwick U and Cardona M 1977 Phys. Rev. B 15 2177 [33] Duan X, Wang C, Pan A, Yu R and Duan X 2015 Chem. Soc. Rev. 44 8859 [34] Huang X, Zeng Z and Zhang H 2013 Chem. Soc. Rev. 42 1934 [35] Mak K F and Shan J 2016 Nat. Photon. 10 216 [36] Zhai T, Li L, Wang X, Fang X, Bando Y and Golberg D 2010 Adv. Funct. Mater. 20 4233 [37] Ma L, Zhang X, Li H, Tan H, Yang Y, Xu Y, Hu W, Zhu X, Zhuang X and Pan A 2015 Semicond. Sci. Technol. 30 105033 [38] Pescaglini A, Martin A, Cammi D, Juska G, Ronning C, Pelucchi E and Iacopino D 2014 Nano Lett. 14 6202 [39] Liu Z, Luo T, Liang B, Chen G, Yu G, Xie X, Chen D and Shen G 2013 Nano Res. 6 775 [40] Zheng D, Fang H, Long M, Wu F, Wang P, Gong F, Wu X, Ho J C, Liao L and Hu W 2018 ACS Nano 12 7239 [41] Wang J, Fang H, Wang X, Chen X, Lu W and Hu W 2017 Small 13 1700894 [42] Miller B, Parzinger E, Vernickel A, Holleitner A W and Wurstbauer U 2015 Appl. Phys. Lett. 106 122103 [43] Liu C H, Chang Y C, Norris T B and Zhong Z 2014 Nat. Nanotechnol. 9 273 [44] Huang W, Gan L, Yang H, Zhou N, Wang R, Wu W, Li H, Ma Y, Zeng H and Zhai T 2017 Adv. Funct. Mater. 27 1702448 [45] Huang Y, Deng H X, Xu K, Wang Z X, Wang Q S, Wang F M, Wang F, Zhan X Y, Li S S, Luo J W and He J 2015 Nanoscale 7 14093 [46] Liu G, Li Y, Li B, Tian H, Fan C, Zhang Y, Hua Z, Wang M, Zheng H and Li E 2018 J. Mater. Chem. C 6 10036 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|