Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057803    DOI: 10.1088/1674-1056/abd7db
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Localized electric-field-enhanced low-light detection by a 2D SnS visible-light photodetector

Hao Wen(文豪), Li Xiong(熊力), Congbing Tan(谭丛兵), Kaimin Zhu(朱凯民), Yong Tang(唐勇), Jinbin Wang(王金斌)§, and Xiangli Zhong(钟向丽)
School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
Abstract  Due to their excellent carrier mobility, high absorption coefficient and narrow bandgap, most 2D IVA metal chalcogenide semiconductors (GIVMCs, metal = Ge, Sn, Pb;chalcogen = S, Se) are regarded as promising candidates for realizing high-performance photodetectors. We synthesized high-quality two-dimensional (2D) tin sulfide (SnS) nanosheets using the physical vapor deposition (PVD) method and fabricated a 2D SnS visible-light photodetector. The photodetector exhibits a high photoresponsivity of 161 A·W-1 and possesses an external quantum efficiency of 4.45×104%, as well as a detectivity of 1.15×109 Jones under 450 nm blue light illumination. Moreover, under poor illumination at optical densities down to 2 mW·cm-2, the responsivity of the device is higher than that at stronger optical densities. We suggest that a photogating effect in the 2D SnS photodetector is mainly responsible for its low-light responsivity. Defects and impurities in 2D SnS can trap carriers and form localized electric fields, which can delay the recombination process of electron-hole pairs, prolong carrier lifetimes, and thus improve the low-light responsivity. This work provides design strategies for detecting low levels of light using photodetectors made of 2D materials.
Keywords:  two-dimensional SnS      photogating effect      low-light detection  
Received:  10 October 2020      Revised:  29 November 2020      Accepted manuscript online:  04 January 2021
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 1872251 and 11875229).
Corresponding Authors:  Congbing Tan, Jinbin Wang, Xiangli Zhong     E-mail:  cbtan@xtu.edu.cn;jbwang@xtu.edu.cn;xlzhong@xtu.edu.cn

Cite this article: 

Hao Wen(文豪), Li Xiong(熊力), Congbing Tan(谭丛兵), Kaimin Zhu(朱凯民), Yong Tang(唐勇), Jinbin Wang(王金斌), and Xiangli Zhong(钟向丽) Localized electric-field-enhanced low-light detection by a 2D SnS visible-light photodetector 2021 Chin. Phys. B 30 057803

[1] Lim Y R, Song W, Han J K, Lee Y B, Kim S J, Myung S, Lee S S, An K S, Choi C J and Lim J 2016 Adv. Mater. 28 5025
[2] Fang H, Hu W, Wang P, Guo N, Luo W, Zheng D, Gong F, Luo M, Tian H, Zhang X, Luo C, Wu X, Chen P, Liao L, Pan A, Chen X and Lu W 2016 Nano Lett. 16 6416
[3] Liu J, Ma Y Q, Dai Y W, Chen Y, Li Y, Tang Y N and Dai X Q 2019 Chin. Phys. B 28 107101
[4] Ai W, Hu X H, Pan L, Chen C C, Wang Y F and She X D 2019 Acta Phys. Sin. 68 197101 (in Chinese)
[5] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[6] Wang H, Xu M and Zheng R K 2020 Acta Phys. Sin. 69 017301 (in Chinese)
[7] Dong B, Yang T and Han Z 2020 Chin. Phys. B 29 097307
[8] Wang J and Hu W 2017 Chin. Phys. B 26 037106
[9] Wang F, Wang Z, Yin L, Cheng R, Wang J, Wen Y, Shifa T A, Wang F, Zhang Y, Zhan X and He J 2018 Chem. Soc. Rev. 47 6296
[10] Buscema M, Island J O, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S and Castellanos-Gomez A 2015 Chem. Soc. Rev. 44 3691
[11] Fang H and Hu W 2017 Adv. Sci. 4 1700323
[12] Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J and Li L J 2013 Adv. Mater. 25 3456
[13] Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, Mion T R, Wang X, Zhou J, Fu Q, Fan H J, Tay B K, Song L, He R H, Kloc C, Ajayan P M and Liu Z 2016 Adv. Funct. Mater. 26 1169
[14] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T and Xia F 2016 Nano Lett. 16 4648
[15] Fengnian X, Han W and Yichen J 2014 Nat. Commun. 5 1
[16] Fei R, Li W, Li J and Yang L 2015 Appl. Phys. Lett. 107 173104
[17] Xia J, Li X Z, Huang X, Mao N, Zhu D D, Wang L, Xu H and Meng X M 2016 Nanoscale 8 2063
[18] Steinmann V, Jaramillo R, Hartman K, Chakraborty R, Brandt R E, Poindexter J R, Lee Y S, Sun L, Polizzotti A, Park H H, Gordon R G and Buonassisi T 2014 Adv. Mater. 26 7488
[19] Sinsermsuksakul P, Hartman K, Bok Kim S, Heo J, Sun L, Hejin Park H, Chakraborty R, Buonassisi T and Gordon R G 2013 Appl. Phys. Lett. 102 053901
[20] Biacchi A J, Vaughn D D, 2nd and Schaak R E 2013 J. Am. Chem. Soc. 135 11634
[21] Deng Z, Cao D, He J, Lin S, Lindsay S M and Liu Y 2012 ACS Nano 6–7 6197
[22] Zhou X, Gan L, Zhang Q, Xiong X, Li H, Zhong Z, Han J and Zhai T 2016 J. Mater. Chem. C 4 2111
[23] Zhang Z, Yang J, Zhang K, Chen S, Mei F and Shen G 2017 J. Mater. Chem. C 5 11288
[24] Huang H, Wang J, Hu W, Liao L, Wang P, Wang X, Gong F, Chen Y, Wu G, Luo W, Shen H, Lin T, Sun J, Meng X, Chen X and Chu J 2016 Nanotechnology 27 445201
[25] Kim D, Lee R, Kim S and Kim T 2019 J. Alloys Compd. 789 960
[26] Liu J, Li X, Wang H, Yuan G, Suvorova A, Gain S, Ren Y and Lei W 2020 ACS Appl. Mater. Interfaces 12 31810
[27] Li J, Wang Z, Wen Y, Chu J, Yin L, Cheng R, Lei L, He P, Jiang C, Feng L and He J 2018 Adv. Funct. Mater. 28 1706437
[28] Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Richard L. Moore I and Yu B 2014 ACS Nano 8 514
[29] Zhou N, Gan L, Yang R, Wang F, Li L, Chen Y, Li D and Zhai T 2019 ACS Nano 13 6297
[30] Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J and Xie L 2015 ACS Nano 9 7450
[31] Liu X, Li Y, Zhou B, Wang X, Cartwright A N and Swihart M T 2014 Chem. Mater. 26 3515
[32] Chandrasekhar H R, Humphreys R G, Zwick U and Cardona M 1977 Phys. Rev. B 15 2177
[33] Duan X, Wang C, Pan A, Yu R and Duan X 2015 Chem. Soc. Rev. 44 8859
[34] Huang X, Zeng Z and Zhang H 2013 Chem. Soc. Rev. 42 1934
[35] Mak K F and Shan J 2016 Nat. Photon. 10 216
[36] Zhai T, Li L, Wang X, Fang X, Bando Y and Golberg D 2010 Adv. Funct. Mater. 20 4233
[37] Ma L, Zhang X, Li H, Tan H, Yang Y, Xu Y, Hu W, Zhu X, Zhuang X and Pan A 2015 Semicond. Sci. Technol. 30 105033
[38] Pescaglini A, Martin A, Cammi D, Juska G, Ronning C, Pelucchi E and Iacopino D 2014 Nano Lett. 14 6202
[39] Liu Z, Luo T, Liang B, Chen G, Yu G, Xie X, Chen D and Shen G 2013 Nano Res. 6 775
[40] Zheng D, Fang H, Long M, Wu F, Wang P, Gong F, Wu X, Ho J C, Liao L and Hu W 2018 ACS Nano 12 7239
[41] Wang J, Fang H, Wang X, Chen X, Lu W and Hu W 2017 Small 13 1700894
[42] Miller B, Parzinger E, Vernickel A, Holleitner A W and Wurstbauer U 2015 Appl. Phys. Lett. 106 122103
[43] Liu C H, Chang Y C, Norris T B and Zhong Z 2014 Nat. Nanotechnol. 9 273
[44] Huang W, Gan L, Yang H, Zhou N, Wang R, Wu W, Li H, Ma Y, Zeng H and Zhai T 2017 Adv. Funct. Mater. 27 1702448
[45] Huang Y, Deng H X, Xu K, Wang Z X, Wang Q S, Wang F M, Wang F, Zhan X Y, Li S S, Luo J W and He J 2015 Nanoscale 7 14093
[46] Liu G, Li Y, Li B, Tian H, Fan C, Zhang Y, Hua Z, Wang M, Zheng H and Li E 2018 J. Mater. Chem. C 6 10036
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[3] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[4] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[8] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[9] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[10] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[11] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[12] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[13] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[14] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[15] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
No Suggested Reading articles found!