Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067803    DOI: 10.1088/1674-1056/abdb1e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes

Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇)
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  Silicon carbide nanotubes (SiCNTs) have broad application prospects in the field of micro-nanodevices due to their excellent physical properties. Based on first-principles, the difference between optical properties of SiCNTs where C atom or Si atom is replaced by group-V element is studied. The results show that the optical absorptions of SiCNTs doped by different elements are significantly different in the band of 600 nm-1500 nm. The differences in photoconductivity, caused by different doping elements, are reflected mainly in the band above 620 nm, the difference in dielectric function and refractive index of SiCNTs are reflected mainly in the band above 500 nm. Further analysis shows that SiCNTs doped with different elements change their band structures, resulting in the differences among their optical properties. The calculation of formation energy shows that SiCNTs are more stable when group-V element replaces Si atom, except N atom. These research results will be beneficial to the applications of SiC nanomaterials in optoelectronic devices and provide a theoretical basis for selecting the SiCNTs' dopants.
Keywords:  silicon carbide nanotubes      group-V doped      optical properties      first-principles theory  
Received:  08 October 2020      Revised:  18 December 2020      Accepted manuscript online:  13 January 2021
PACS:  78.67.Ch (Nanotubes)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  71.55.-i (Impurity and defect levels)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574261 and 51132002) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015203261).
Corresponding Authors:  Xiao-Yong Fang     E-mail:  fang@ysu.edu.cn

Cite this article: 

Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇) Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes 2021 Chin. Phys. B 30 067803

[1] Ansari R, Mirnezhad M and Rouhi H 2014 Nano 09 1450043
[2] Liu G, Tuttle B R and Dhar S 2015 Appl. Phys. Rev. 2 021307
[3] Toktamiş H and Hama P O 2019 Applied Radiation and Isotopes 148 138
[4] Kityk I V, Makowska J M, Kassiba A and Plucinski K J 2000 Opt. Mater. 13 449
[5] Maboudian R, Carraro C, Senesky D G and Roper C S 2013 Vac. Sci. Technol. A 31 050805
[6] Ivanov P A and Chelnokov V E 1992 Semicond. Sci. Technol. 7 863
[7] Feng X L, Matheny M H, Zorman C A, Mehregany M and Roukes M L 2010 Nano Lett. 10 2891
[8] Attolini G, Rossi F, Negri M, Dhanabalan S C, Bosi M, Boschi F, Lagonegro P, Lupo P and Salviati G 2014 Mater. Lett. 124 169
[9] Pavlikov A V, Latukhina N V, Chepurnov V I and Timoshenko V Y 2017 Semiconductors 51 402
[10] Li Y J, Li S L, Gong P, Li Y L,Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247
[11] Li Y L, Gong P and Fang X Y 2020 Chin. Phys. B 29 037304
[12] Sha B, Lukianov A N, Dusheiko M G, Lozinskii V B, Klyui A N, Korbutyak D V, Pritchin S E and Klyui N I 2020 Opt. Mater. 106 109959
[13] Zhao J X and Ding Y H 2008 J. Phys. Chem. C 112 2558
[14] Wu A, Song Q, Yang L and Hao Q 2011 Theor. Comput. Chem. 977 92
[15] Zhao M, Xia Y, Zhang R Q and Lee S T 2005 J. Chem. Phys. 122 214707
[16] Zhou X and Tian W Q 2011 J. Phys. Chem. C 115 11493
[17] Gong P, Li Y L, Jia Y H, Li Y J, Li S L, Fang X Y and Cao M S 2018 Phys. Lett. A 382 2484
[18] Huang S P, Wu D S, Hu J M, Zhang H, Xie Z, Hu H and Cheng W D 2007 Opt. Express 15 10947
[19] Behzad S 2015 Opt. Mater. 47 512
[20] Wu I J and Guo G Y 2007 Phys. Rev. B 76 035343
[21] Sun X H, Li C P, Wong W K, Wong N B, Lee C S, Lee S T and Teo B K 2002 J. Am. Chem. Soc. 124 14464
[22] Romain L L, Ollivier M, Thiney V, Pluchery O C and Martin M 2013 J. Phys. D: Appl. Phys. 46 092001
[23] Zhou J Y, Zhou M, Chen Z Y, Zhang Z X, Chen C C, Li R S, Gao X P and Xie E Q 2009 Surf. Coat. Technol. 203 3219
[24] Mercan K and Civalek O 2017 Composites Part B 114 34
[25] Yang K, Li D F, Huang W Q, Xu L, Huang G F and Wen S C 2017 Appl. Phys. A 123 96
[26] Miao H, Huang G F, Liu J H, Zhou B X, Pan A L, Huang W Q and Huang G F 2016 Appl. Surf. Sci. 370 427
[27] Qi K Z, Xing X H, Zada A, Li M Y, Wang Q, Liu S Y, Lin H X and Wang G Z 2020 Ceram. Int. 46 1494
[28] Wang X, Huang S X, Luo H, Deng L W, Wu H, Xu Y C, He J and He L H 2019 Acta Phys Sin. 68 187301 (in Chinese)
[29] Bao S, Zheng J P, Yang G H and Chen J W 2009 Physica B 404 4090
[30] Behzad S, Chegel R, Moradian R and Shahrokhi M 2014 Superlattices and Microstructures 73 185
[31] Khodadad M, Baizaee S M, Yuonesi M and Kahnouji H 2014 Physica E 59 139
[32] Gong P, Li Y L, Jia Y H and Fang X Y 2018 Chin. Phys. Lett. 35 117801
[33] Huu C P, Keller N, Ehret G and Ledoux M J 2001 Journal of Catalysis 200 400
[34] Vanderbilt D 1990 Phys. Rev. B 41 7892
[35] Song J X, Yang Y T, Liu H X and Zhang Z Y 2009 Acta Phys. Sin. 58 4883 (in Chinese)
[36] Yang Y Y, Gong P, Ma W D, Li Y L, Fang X Y, Jia Y H and Cao M S 2020 Phys. Lett. A 384 126602
[37] Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H and Cao M S 2021 Physica E 128 114578
[38] Gali A 2006 Phys. Rev. B 73 245415
[39] Wood D and Tauc J 1972 Phys. Rev. B 5 3144
[40] Song J X, Liu H X, Guo Y N and Zhu K R 2015 Physica E 74 198
[41] Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
[42] Li Y J, Li Y L, Li S L, Gong P and Fang X Y 2017 Chin. Phys. B 26 047309
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[3] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[8] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[9] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[10] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[11] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[12] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[13] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[14] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[15] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
No Suggested Reading articles found!