CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes |
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇)† |
Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract Silicon carbide nanotubes (SiCNTs) have broad application prospects in the field of micro-nanodevices due to their excellent physical properties. Based on first-principles, the difference between optical properties of SiCNTs where C atom or Si atom is replaced by group-V element is studied. The results show that the optical absorptions of SiCNTs doped by different elements are significantly different in the band of 600 nm-1500 nm. The differences in photoconductivity, caused by different doping elements, are reflected mainly in the band above 620 nm, the difference in dielectric function and refractive index of SiCNTs are reflected mainly in the band above 500 nm. Further analysis shows that SiCNTs doped with different elements change their band structures, resulting in the differences among their optical properties. The calculation of formation energy shows that SiCNTs are more stable when group-V element replaces Si atom, except N atom. These research results will be beneficial to the applications of SiC nanomaterials in optoelectronic devices and provide a theoretical basis for selecting the SiCNTs' dopants.
|
Received: 08 October 2020
Revised: 18 December 2020
Accepted manuscript online: 13 January 2021
|
PACS:
|
78.67.Ch
|
(Nanotubes)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574261 and 51132002) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015203261). |
Corresponding Authors:
Xiao-Yong Fang
E-mail: fang@ysu.edu.cn
|
Cite this article:
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇) Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes 2021 Chin. Phys. B 30 067803
|
[1] Ansari R, Mirnezhad M and Rouhi H 2014 Nano 09 1450043 [2] Liu G, Tuttle B R and Dhar S 2015 Appl. Phys. Rev. 2 021307 [3] Toktamiş H and Hama P O 2019 Applied Radiation and Isotopes 148 138 [4] Kityk I V, Makowska J M, Kassiba A and Plucinski K J 2000 Opt. Mater. 13 449 [5] Maboudian R, Carraro C, Senesky D G and Roper C S 2013 Vac. Sci. Technol. A 31 050805 [6] Ivanov P A and Chelnokov V E 1992 Semicond. Sci. Technol. 7 863 [7] Feng X L, Matheny M H, Zorman C A, Mehregany M and Roukes M L 2010 Nano Lett. 10 2891 [8] Attolini G, Rossi F, Negri M, Dhanabalan S C, Bosi M, Boschi F, Lagonegro P, Lupo P and Salviati G 2014 Mater. Lett. 124 169 [9] Pavlikov A V, Latukhina N V, Chepurnov V I and Timoshenko V Y 2017 Semiconductors 51 402 [10] Li Y J, Li S L, Gong P, Li Y L,Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247 [11] Li Y L, Gong P and Fang X Y 2020 Chin. Phys. B 29 037304 [12] Sha B, Lukianov A N, Dusheiko M G, Lozinskii V B, Klyui A N, Korbutyak D V, Pritchin S E and Klyui N I 2020 Opt. Mater. 106 109959 [13] Zhao J X and Ding Y H 2008 J. Phys. Chem. C 112 2558 [14] Wu A, Song Q, Yang L and Hao Q 2011 Theor. Comput. Chem. 977 92 [15] Zhao M, Xia Y, Zhang R Q and Lee S T 2005 J. Chem. Phys. 122 214707 [16] Zhou X and Tian W Q 2011 J. Phys. Chem. C 115 11493 [17] Gong P, Li Y L, Jia Y H, Li Y J, Li S L, Fang X Y and Cao M S 2018 Phys. Lett. A 382 2484 [18] Huang S P, Wu D S, Hu J M, Zhang H, Xie Z, Hu H and Cheng W D 2007 Opt. Express 15 10947 [19] Behzad S 2015 Opt. Mater. 47 512 [20] Wu I J and Guo G Y 2007 Phys. Rev. B 76 035343 [21] Sun X H, Li C P, Wong W K, Wong N B, Lee C S, Lee S T and Teo B K 2002 J. Am. Chem. Soc. 124 14464 [22] Romain L L, Ollivier M, Thiney V, Pluchery O C and Martin M 2013 J. Phys. D: Appl. Phys. 46 092001 [23] Zhou J Y, Zhou M, Chen Z Y, Zhang Z X, Chen C C, Li R S, Gao X P and Xie E Q 2009 Surf. Coat. Technol. 203 3219 [24] Mercan K and Civalek O 2017 Composites Part B 114 34 [25] Yang K, Li D F, Huang W Q, Xu L, Huang G F and Wen S C 2017 Appl. Phys. A 123 96 [26] Miao H, Huang G F, Liu J H, Zhou B X, Pan A L, Huang W Q and Huang G F 2016 Appl. Surf. Sci. 370 427 [27] Qi K Z, Xing X H, Zada A, Li M Y, Wang Q, Liu S Y, Lin H X and Wang G Z 2020 Ceram. Int. 46 1494 [28] Wang X, Huang S X, Luo H, Deng L W, Wu H, Xu Y C, He J and He L H 2019 Acta Phys Sin. 68 187301 (in Chinese) [29] Bao S, Zheng J P, Yang G H and Chen J W 2009 Physica B 404 4090 [30] Behzad S, Chegel R, Moradian R and Shahrokhi M 2014 Superlattices and Microstructures 73 185 [31] Khodadad M, Baizaee S M, Yuonesi M and Kahnouji H 2014 Physica E 59 139 [32] Gong P, Li Y L, Jia Y H and Fang X Y 2018 Chin. Phys. Lett. 35 117801 [33] Huu C P, Keller N, Ehret G and Ledoux M J 2001 Journal of Catalysis 200 400 [34] Vanderbilt D 1990 Phys. Rev. B 41 7892 [35] Song J X, Yang Y T, Liu H X and Zhang Z Y 2009 Acta Phys. Sin. 58 4883 (in Chinese) [36] Yang Y Y, Gong P, Ma W D, Li Y L, Fang X Y, Jia Y H and Cao M S 2020 Phys. Lett. A 384 126602 [37] Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H and Cao M S 2021 Physica E 128 114578 [38] Gali A 2006 Phys. Rev. B 73 245415 [39] Wood D and Tauc J 1972 Phys. Rev. B 5 3144 [40] Song J X, Liu H X, Guo Y N and Zhu K R 2015 Physica E 74 198 [41] Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106 [42] Li Y J, Li Y L, Li S L, Gong P and Fang X Y 2017 Chin. Phys. B 26 047309 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|