Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040307    DOI: 10.1088/1674-1056/abd759
GENERAL Prev   Next  

Electron transfer properties of double quantum dot system in a fluctuating environment

Lujing Jiang(姜露静)1,†, Kang Lan(蓝康)1,2,†, Zhenyu Lin(林振宇)1, and Yanhui Zhang(张延惠)1,‡
1 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  Using the innovative method of the additional Bloch vector, the electron transfer properties of a double quantum dot (DQD) system measured by a quantum point contact (QPC) in a fluctuating environment are investigated. The results show that the environmental noises in transverse and longitudinal directions play different roles in the dynamical evolution of the open quantum systems. Considering the DQD with symmetric energy level, the Fano factor exhibits a slight peak with the increase of transverse noise amplitude σ T, which provides a basis for distinguishing dynamical phenomena caused by different directional fluctuation noises in symmetric DQD structures by studying the detector output. In the case of asymmetric DQD, the dependence of a detector current involving the level displacement is distinct when increasing the transverse noise damping coefficient τ T and the longitudinal noise damping coefficient τε respectively. Meanwhile, the transverse noise damping coefficient τT could significantly reduce the Fano factor and enhance the stability of the quantum system compared with the longitudinal one. The Fano factors with stable values as the enhancement of noise amplitudes show different external influences from the detector measurement, and provide a numerical reference for adjusting the noise amplitudes in both transverse and longitudinal directions appropriately in a microscopic experimental process to offset the decoherence effect caused by the measurements. Finally, the research of average waiting time provides unique insights to the development of single electron transfer theory in the short-time limit.
Keywords:  double quantum dots      fluctuating environment      electron transfer      noise  
Received:  02 November 2020      Revised:  30 November 2020      Accepted manuscript online:  30 December 2020
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.60.Gg (Quantum transport)  
  73.63.Kv (Quantum dots)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM030).
Corresponding Authors:  These authors contributed equally. Corresponding author. E-mail: yhzhang@sdnu.edu.cn   

Cite this article: 

Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠) Electron transfer properties of double quantum dot system in a fluctuating environment 2021 Chin. Phys. B 30 040307

1 Gurvitz S A 1997 Phys. Rev. B 56 15215
2 Gurvitz S A and Berman G P 2005 Phys. Rev. B 72 073303
3 Sànchez R, Kohler S, Hänggi P and Platero G 2008 Phys. Rev. B 77 035409
4 Xu C R and Vavilov M G 2013 Phys. Rev. B 87 035429
5 Chantasri A and Jordan A N 2015 Phys. Rev. A 92 032125
6 Du Q, Lan K, Zhang Y H and Jiang L J 2020 Chin. Phy. B 29 030302
7 Petrova A E and Stishov S M 2012 Phys. Rev. B 86 174407
8 Zhu X M, Zhang Y X, Pang S S, Qiao C, Liu Q H and Wu S J 2011 Phys. Rev. A 84 052111
9 Jin J S, Marthaler M, Jin P Q, Golubev D and Schon G 2013 New J.Phys. 15 025044
10 Wang Y T, Tang J S, Wei Z Y, Yu S, Ke Z J, Xu X Y, Li C F and Guo G C 2017 Phys. Rev. Lett. 118 020403
11 Cai X J and Zheng Y J 2016 Phys. Rev. A 94 042110
12 Orgiazzi J L, Deng C,Layden D, Marchildon R, Kitapli F, Shen F, Bal M, Ong F R and Lupascu A 2016 Phys. Rev. B 93 104518
13 Ouyang S H, Lam C H and You J Q 2010 Phys. Rev. B 81 075301
14 Korotkov A N and Averin D V 2001 Phys. Rev. B 64 165310
15 Luoma K, Harkonen K, Maniscalco S, Suominen K A and Piilo J 2012 Phys. Rev. A 86 022102
16 Chen P, Jian C and Goan H 2011 Phys. Rev. B 83 115439
17 Gustavsson S, Shorubalko I, Leturcq R, Schon S and Ensslin K 2008 Appl. Phys. Lett. 92 152101
18 Cai X J and Zheng Y J 2017 Phys. Rev. A 95 052104
19 Suter D and Alvarez G 2016 Rev. Mod. Phys. 88 041001
20 Flindt C, Novotny T, Braggio A and Jauho A P 2010 Phys. Rev. B 82 155407
21 Thomas K H and Flindt C 2013 Phys. Rev. B 87 121405
22 Kieslich G, Scholl E, Brandes T, Hohls F and Haug R J 2007 Phys. Rev. Lett. 99 206602
23 Xu L T,Cao Y S, Li X Q, Yan Y J and Gurvitz S 2014 Phys. Rev. A 90 022108
24 Cai X J, Meng R X, Zhang Y H and Wang L F 2019 Europhys. Lett. 125 30007
25 Nourmandipour A, Tavassoly M K and Rafiee M 2016 Phys. Rev. A 93 022327
26 Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665
27 Cai X J Entropy 21 1040
28 Cai X J and Zheng Y J 2018 J. Chem. Phys. 149 094107
29 Cai X J Sci. Rep. 10 88
30 Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L and Li Z L 2020 Acta Phys. Sin. 69 208502 (in Chinese)
31 Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F and Li Z L 2019 Acta Phys. Sin. 68 178502 (in Chinese)
32 Wang D H 2014 J. Electromagnet. Wave 28 893845
33 An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 7498 (in Chinese)
34 Wang D H, Li M Z, Song H N and Ren X X 2018 Acta Phys. Sin. 27 023202 (in Chinese)
35 Li Z Z, Lam C H, Yu T and You J Q 2013 Sci. Rep. 3 03026
36 Zhang Y H, Kang L S, Xu X L, Tang X, Li H B and Cai X J 2017 Mod. Phys. Lett. B 31 1730004
37 Li X Q, Luo J L, Yang Y G, Cui P and Yan Y J 2005 Phys. Rev. B 71 205304
38 Zhao G P, Zhang Y H, Cai X J, Xu X L,Kang L S Phys. E 84 1386
39 Gurvitz S A and Mozyrsky D 2008 Phys. Rev. B 77 075325
40 Korotkov A N 2001 Phys. Rev. B 63 085312
41 Liu B, Zhang F Y, Song J and Song H S Sci. Rep. 5 11726
42 Averin D V and Sukhorukov E V 2005 Phys. Rev. Lett. 95 126803
43 Gershon G, Bomze Y, Sukhorukov E V and Reznikov M 2008 Phys. Rev. Lett. 101 1016803
44 Luo Y J, Jiao H J, Shen Y, Cen G, He X L and Wang C R J Phys. Con. Matt. 23 145301
45 Belzig W 2005 Phys. Rev. B 71 161301
46 Braggio A, Konig J and Fazio R 2006 Phys. Rev. Lett. 96 026805
47 Xu C R and Vavilov M 2013 Phys. Rev. B 88 195307
48 Flindt C, Novotny T, Braggio A, Sassetti M and Jauho A 2008 Phys. Rev. Lett. 100 150601
49 Braggio A, Flindt C and Novotny T 2009 J. Stat. Mech. 2009 01048
50 Gustavsson S, Leturcq R, Simovic B, Schleser R, Studerus P, Ihn T,Ensslin K, Driscoll D C and Gossard A C 2006 Phys. Rev. B 74 195305
51 Zheng Y J and Brown F L H 2003 Phys. Rev. Lett. 90 238305
52 Kang L S, Zhang Y H, Xu X L and Tang X 2017 Phys. Rev. B 96 235417
53 Lan K, Du Q, Kang L S, Jiang L J, Lin Z Y and Zhang Y H 2020 Acta Phys. Sin. 69 040504 (in Chinese)
54 Shimizu A and Ueda M 1992 Phys. Rev. Lett. 69 1403
55 Okazaki Y, Sasaki S and Muraki K 2013 Phys. Rev. B 87 041302
56 Gustavsson S, Leturcq R, Ihn T, Ensslin K, Reinwald M and Wegscheider W 2007 Phys. Rev. B 75 075314
57 Flindt C, Novotny T and Jauho A P 2004 Phys. Rev. B 70 205334
58 Lan K, Du Q, Kang L S, Tang X, Jiang L J, Zhang Y H and Cai X J 2020 Phys. Rev. B 101 174302
59 Gurvitz S A and Prager Y S 1996 Phys. Rev. B 53 15932
60 Albert M, Haack G, Flindt C and Büttiker M 2012 Phys. Rev. Lett. 108 186806
61 Emary C, Marcos D, Aguado R and Brandes T 2007 Phys. Rev. B 76 161404
62 Thielmann A, Hettler M H, König J and Schön G 2005 Phys. Rev. Lett. 95 46806
63 Gurvitz S A, Fedichkin L, Mozyrsky D and Berman G P 2003 Phys. Rev. Lett. 91 066801
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[6] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[7] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[8] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[9] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[12] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[13] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[14] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[15] Vacuum-gap-based lumped element Josephson parametric amplifier
Sishi Wu(吴思诗), Dengke Zhang(张登科), Rui Wang(王锐), Yulong Liu(刘玉龙), Shuai-Peng Wang(王帅鹏), Qichun Liu(刘其春), J S Tsai(蔡兆申), and Tiefu Li(李铁夫). Chin. Phys. B, 2022, 31(1): 010306.
No Suggested Reading articles found!