|
|
Electron transfer properties of double quantum dot system in a fluctuating environment |
Lujing Jiang(姜露静)1,†, Kang Lan(蓝康)1,2,†, Zhenyu Lin(林振宇)1, and Yanhui Zhang(张延惠)1,‡ |
1 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract Using the innovative method of the additional Bloch vector, the electron transfer properties of a double quantum dot (DQD) system measured by a quantum point contact (QPC) in a fluctuating environment are investigated. The results show that the environmental noises in transverse and longitudinal directions play different roles in the dynamical evolution of the open quantum systems. Considering the DQD with symmetric energy level, the Fano factor exhibits a slight peak with the increase of transverse noise amplitude σ T, which provides a basis for distinguishing dynamical phenomena caused by different directional fluctuation noises in symmetric DQD structures by studying the detector output. In the case of asymmetric DQD, the dependence of a detector current involving the level displacement is distinct when increasing the transverse noise damping coefficient τ T and the longitudinal noise damping coefficient τε respectively. Meanwhile, the transverse noise damping coefficient τT could significantly reduce the Fano factor and enhance the stability of the quantum system compared with the longitudinal one. The Fano factors with stable values as the enhancement of noise amplitudes show different external influences from the detector measurement, and provide a numerical reference for adjusting the noise amplitudes in both transverse and longitudinal directions appropriately in a microscopic experimental process to offset the decoherence effect caused by the measurements. Finally, the research of average waiting time provides unique insights to the development of single electron transfer theory in the short-time limit.
|
Received: 02 November 2020
Revised: 30 November 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
05.60.Gg
|
(Quantum transport)
|
|
73.63.Kv
|
(Quantum dots)
|
|
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM030). |
Corresponding Authors:
†These authors contributed equally. ‡Corresponding author. E-mail: yhzhang@sdnu.edu.cn
|
Cite this article:
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠) Electron transfer properties of double quantum dot system in a fluctuating environment 2021 Chin. Phys. B 30 040307
|
1 Gurvitz S A 1997 Phys. Rev. B 56 15215 2 Gurvitz S A and Berman G P 2005 Phys. Rev. B 72 073303 3 Sànchez R, Kohler S, Hänggi P and Platero G 2008 Phys. Rev. B 77 035409 4 Xu C R and Vavilov M G 2013 Phys. Rev. B 87 035429 5 Chantasri A and Jordan A N 2015 Phys. Rev. A 92 032125 6 Du Q, Lan K, Zhang Y H and Jiang L J 2020 Chin. Phy. B 29 030302 7 Petrova A E and Stishov S M 2012 Phys. Rev. B 86 174407 8 Zhu X M, Zhang Y X, Pang S S, Qiao C, Liu Q H and Wu S J 2011 Phys. Rev. A 84 052111 9 Jin J S, Marthaler M, Jin P Q, Golubev D and Schon G 2013 New J.Phys. 15 025044 10 Wang Y T, Tang J S, Wei Z Y, Yu S, Ke Z J, Xu X Y, Li C F and Guo G C 2017 Phys. Rev. Lett. 118 020403 11 Cai X J and Zheng Y J 2016 Phys. Rev. A 94 042110 12 Orgiazzi J L, Deng C,Layden D, Marchildon R, Kitapli F, Shen F, Bal M, Ong F R and Lupascu A 2016 Phys. Rev. B 93 104518 13 Ouyang S H, Lam C H and You J Q 2010 Phys. Rev. B 81 075301 14 Korotkov A N and Averin D V 2001 Phys. Rev. B 64 165310 15 Luoma K, Harkonen K, Maniscalco S, Suominen K A and Piilo J 2012 Phys. Rev. A 86 022102 16 Chen P, Jian C and Goan H 2011 Phys. Rev. B 83 115439 17 Gustavsson S, Shorubalko I, Leturcq R, Schon S and Ensslin K 2008 Appl. Phys. Lett. 92 152101 18 Cai X J and Zheng Y J 2017 Phys. Rev. A 95 052104 19 Suter D and Alvarez G 2016 Rev. Mod. Phys. 88 041001 20 Flindt C, Novotny T, Braggio A and Jauho A P 2010 Phys. Rev. B 82 155407 21 Thomas K H and Flindt C 2013 Phys. Rev. B 87 121405 22 Kieslich G, Scholl E, Brandes T, Hohls F and Haug R J 2007 Phys. Rev. Lett. 99 206602 23 Xu L T,Cao Y S, Li X Q, Yan Y J and Gurvitz S 2014 Phys. Rev. A 90 022108 24 Cai X J, Meng R X, Zhang Y H and Wang L F 2019 Europhys. Lett. 125 30007 25 Nourmandipour A, Tavassoly M K and Rafiee M 2016 Phys. Rev. A 93 022327 26 Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665 27 Cai X J Entropy 21 1040 28 Cai X J and Zheng Y J 2018 J. Chem. Phys. 149 094107 29 Cai X J Sci. Rep. 10 88 30 Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L and Li Z L 2020 Acta Phys. Sin. 69 208502 (in Chinese) 31 Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F and Li Z L 2019 Acta Phys. Sin. 68 178502 (in Chinese) 32 Wang D H 2014 J. Electromagnet. Wave 28 893845 33 An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 7498 (in Chinese) 34 Wang D H, Li M Z, Song H N and Ren X X 2018 Acta Phys. Sin. 27 023202 (in Chinese) 35 Li Z Z, Lam C H, Yu T and You J Q 2013 Sci. Rep. 3 03026 36 Zhang Y H, Kang L S, Xu X L, Tang X, Li H B and Cai X J 2017 Mod. Phys. Lett. B 31 1730004 37 Li X Q, Luo J L, Yang Y G, Cui P and Yan Y J 2005 Phys. Rev. B 71 205304 38 Zhao G P, Zhang Y H, Cai X J, Xu X L,Kang L S Phys. E 84 1386 39 Gurvitz S A and Mozyrsky D 2008 Phys. Rev. B 77 075325 40 Korotkov A N 2001 Phys. Rev. B 63 085312 41 Liu B, Zhang F Y, Song J and Song H S Sci. Rep. 5 11726 42 Averin D V and Sukhorukov E V 2005 Phys. Rev. Lett. 95 126803 43 Gershon G, Bomze Y, Sukhorukov E V and Reznikov M 2008 Phys. Rev. Lett. 101 1016803 44 Luo Y J, Jiao H J, Shen Y, Cen G, He X L and Wang C R J Phys. Con. Matt. 23 145301 45 Belzig W 2005 Phys. Rev. B 71 161301 46 Braggio A, Konig J and Fazio R 2006 Phys. Rev. Lett. 96 026805 47 Xu C R and Vavilov M 2013 Phys. Rev. B 88 195307 48 Flindt C, Novotny T, Braggio A, Sassetti M and Jauho A 2008 Phys. Rev. Lett. 100 150601 49 Braggio A, Flindt C and Novotny T 2009 J. Stat. Mech. 2009 01048 50 Gustavsson S, Leturcq R, Simovic B, Schleser R, Studerus P, Ihn T,Ensslin K, Driscoll D C and Gossard A C 2006 Phys. Rev. B 74 195305 51 Zheng Y J and Brown F L H 2003 Phys. Rev. Lett. 90 238305 52 Kang L S, Zhang Y H, Xu X L and Tang X 2017 Phys. Rev. B 96 235417 53 Lan K, Du Q, Kang L S, Jiang L J, Lin Z Y and Zhang Y H 2020 Acta Phys. Sin. 69 040504 (in Chinese) 54 Shimizu A and Ueda M 1992 Phys. Rev. Lett. 69 1403 55 Okazaki Y, Sasaki S and Muraki K 2013 Phys. Rev. B 87 041302 56 Gustavsson S, Leturcq R, Ihn T, Ensslin K, Reinwald M and Wegscheider W 2007 Phys. Rev. B 75 075314 57 Flindt C, Novotny T and Jauho A P 2004 Phys. Rev. B 70 205334 58 Lan K, Du Q, Kang L S, Tang X, Jiang L J, Zhang Y H and Cai X J 2020 Phys. Rev. B 101 174302 59 Gurvitz S A and Prager Y S 1996 Phys. Rev. B 53 15932 60 Albert M, Haack G, Flindt C and Büttiker M 2012 Phys. Rev. Lett. 108 186806 61 Emary C, Marcos D, Aguado R and Brandes T 2007 Phys. Rev. B 76 161404 62 Thielmann A, Hettler M H, König J and Schön G 2005 Phys. Rev. Lett. 95 46806 63 Gurvitz S A, Fedichkin L, Mozyrsky D and Berman G P 2003 Phys. Rev. Lett. 91 066801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|