Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108708    DOI: 10.1088/1674-1056/abb7f3
Special Issue: SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
TOPICAL REVIEW—Modeling and simulations for the structures and functions of proteins and nucleic acids Prev   Next  

Methods and applications of RNA contact prediction

Huiwen Wang(王慧雯) and Yunjie Zhao(赵蕴杰)†
1 Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
Abstract  

The RNA tertiary structure is essential to understanding the function and biological processes. Unfortunately, it is still challenging to determine the large RNA structure from direct experimentation or computational modeling. One promising approach is first to predict the tertiary contacts and then use the contacts as constraints to model the structure. The RNA structure modeling depends on the contact prediction accuracy. Although many contact prediction methods have been developed in the protein field, there are only several contact prediction methods in the RNA field at present. Here, we first review the theoretical basis and test the performances of recent RNA contact prediction methods for tertiary structure and complex modeling problems. Then, we summarize the advantages and limitations of these RNA contact prediction methods. We suggest some future directions for this rapidly expanding field in the last.

Keywords:  RNA structure      contact prediction      direct coupling analysis      network      machine learning  
Received:  30 April 2020      Revised:  07 July 2020      Accepted manuscript online:  14 September 2020
PACS:  87.14.gn (RNA)  
  87.15.K- (Molecular interactions; membrane-protein interactions)  
  87.10.Ca (Analytical theories)  
  87.15.A- (Theory, modeling, and computer simulation)  
Corresponding Authors:  Corresponding author. E-mail: yjzhaowh@mail.ccnu.edu.cn   
About author: 
†Corresponding author. E-mail: yjzhaowh@mail.ccnu.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant No. 11704140) and Self-determined Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE (Grant No. CCNU20TS004).

Cite this article: 

Huiwen Wang(王慧雯) and Yunjie Zhao(赵蕴杰)† Methods and applications of RNA contact prediction 2020 Chin. Phys. B 29 108708

Method name Input information Comments Link Reference
Mutual Information RNA sequence intramolecular contacts http://dca.rice.edu/portal/dca/home [6466]
mpDCA RNA sequence intramolecular contacts not available [77]
mfDCA RNA sequence intramolecular contacts http://dca.rice.edu/portal/dca/home [74]
plmDCA RNA sequence intramolecular contacts https://github.com/magnusekeberg/plmDCA [78]
DIRECT RNA sequence and structure intramolecular contacts https://zhaolab.com.cn/DIRECT/ [79]
Rsite RNA structure intermolecular contacts http://www.cuilab.cn/rsite [85]
Rsite2 RNA structure intermolecular contacts http://www.cuilab.cn/rsite2 [86]
RBind RNA structure intermolecular contacts https://zhaolab.com.cn/RBind/ [87]
PRIdictor RNA and protein sequences intermolecular contacts http://bclab.inha.ac.kr/pridictor/ [89]
Table 1.  

A list of RNA contact prediction methods.

Fig. 1.  

The direct and indirect contacts in RNA structure. The interactions of ij, jk, and km are direct contacts because they are in close distance. The interaction of im is indirect contact due to the transitive correlation from the tandem direct contacts. The yellow dot, red line, and blue line represent a nucleotide, direct contact, and indirect contact, respectively. The HIV-1 RNA molecule is colored in yellow with a cartoon representation (PDB code: 5L1Z. N chain).[92]

Fig. 2.  

The co-evolution based RNA contact prediction. The co-evolution based contact prediction can identify the RNA intramolecular contacts from the homologous sequence across different species. The solid black lines, red dots, and green dotted lines represent RNA sequences, nucleotides, and RNA contacts, respectively. The HIV-1 RNA (PDB code: 5L1Z, N chain)[92] is colored in yellow with a cartoon representation.

Fig. 3.  

The accuracy of RNA intramolecular contact prediction methods. The accuracy (positive predictive value, PPV) of MI, mfDCA, plmDCA, and DIRECT are 0.26, 0.28, 0.31, and 0.34, respectively.

Fig. 4.  

The accuracy of RNA intermolecular contact prediction methods. The accuracy (positive predictive value, PPV) of Rsite, Rsite2, RBind, and PRIdictor are 0.62, 0.64, 0.67, and 0.62, respectively.

Fig. 5.  

The structure-based RNA contact prediction. The RNA or RNA complex structural characteristic patterns can be used for the RNA contact prediction by using machine learning. The red dots, blue dots, and green dotted lines represent nucleotides, residues, and predicted RNA contacts, respectively. The HIV-1 RNA (PDB code: 5L1Z, N chain) and HIV-1 Tat protein (PDB code: 5L1Z, D chain)[92] are colored in yellow and cyan with a cartoon representation, respectively.

[1]
Wang J, Zhao Y, Zhu C, Xiao Y 2015 Nucleic Acids Res. 43 e63
[2]
Wang J, Mao K, Zhao Y, Zeng C, Xiang J, Zhang Y, Xiao Y 2017 Nucleic Acids Res. 45 6299
[3]
Zelinger L, Swaroop A 2018 Trends Genet. 34 341
[4]
Lu D, Thum T 2019 Nat. Rev. Cardiol. 16 661
[5]
Huang Y, Li H, Xiao Y 2018 Bioinformatics 34 1238
[6]
Zhang J, Zhang Y J, Wang W 2010 Chin. Phys. Lett. 27 118702
[7]
Nithin C, Ghosh P, Bujnicki J M 2018 Genes 9 432
[8]
Wang H, Wang K, Guan Z, Jian Y, Jia Y, Kashanchi F, Zeng C, Zhao 2017 Chin. Phys. B 26 128702
[9]
Yan Y, Huang S Y 2018 Bioinformatics 34 453
[10]
Yan Y, Zhang D, Zhou P, Li B, Huang S Y 2017 Nucleic Acids Res. 45 W365
[11]
Zhao Y, Jian Y, Liu Z, Liu H, Liu Q, Chen C, Li Z, Wang L, Huang H H, Zeng C 2017 Sci. Rep. 7 2876
[12]
Yan Y, Wen Z, Zhang D, Huang S Y 2018 Nucleic Acids Res. 46 e56
[13]
Bao L, Wang J, Xiao Y 2019 Phys. Rev. E 100 022412
[14]
Wang H, Qiu J, Liu H, Jian Y, Xu Y, Jia Y, Kashanchi F, Zeng C, Zhao Y 2019 BMC Bioinformatics 20 617
[15]
Karn J, Keen N J, Churcher M J, Aboul-ela F, Varani G, Hamy F, Felder E R, Heizmann G, Klimkait T 1998 Pharmacochemistry Library 29 121
[16]
Abulwerdi F A, Grice S F J L 2017 Curr. Pharm. Des. 23 4112
[17]
Zhao Y, Chen H, Du C, Jian Y, Li H, Xiao Y, Saifuddin M, Kashanchi F, Zeng C 2018 Int. J. Pept. Res. Ther. 25 807
[18]
Romby P, Charpentier E 2010 Cell. Mol. Life Sci. 67 217
[19]
Zhou T, Wang H, Song L, Zhao Y 2020 J. Theor. Comput. Chem. 19 2040001
[20]
Lou Y, Chen B, Zhou J, Sintim H O, Dayie T K 2014 Mol.Biosyst. 10 384
[21]
Kang M, Eichhorn C D, Feigon J 2014 Proc. Natl. Acad. Sci. USA 111 E663
[22]
Heroven A K, Nuss A M, Dersch P 2017 RNA Biol. 14 471
[23]
Wang H, Guan Z, Qiu J, Jia Y, Zeng C, Zhao Y 2020 RSC. Adv. 10 2004
[24]
Jiang L, Schaffitzel C, Bingel-Erlenmeyer R, Ban N, Korber P, Koning R I, de Geus Dd C, Plaisier J R, Abrahams J P 2009 J. Mol. Biol. 386 1357
[25]
Cate J H, Doudna J A 2000 Method. Enzymol. 317 169
[26]
Latham M P, Brown D J, McCallum S A, Prodi A 2005 Chembiochem 6 1492
[27]
Zhao Y, Wang J, Zeng C, Xiao Y 2018 Biophys. Rep. 4 123
[28]
Tang Y, Liu D, Wang Z, Wen T, Deng L 2017 BMC Bioinformatics 18 465
[29]
Su H, Liu M, Sun S, Peng Z, Yang J 2019 Bioinformatics 35 930
[30]
Duss O, Yulikov M, Jeschke G, Allain F H 2014 Nat. Commun. 5 3669
[31]
Duss O, Yulikov M, Allain F H T, Jeschke G 2015 Method. Enzymol. 558 279
[32]
Cheong H K, Hwang E, Lee C, Choi B S, Cheong C 2004 Nucleic Acids Res. 32 e84
[33]
Zhao Y, Huang Y, Zhou G, Wang Y, Man J, Xiao Y 2012 Sci. Rep. 2 734
[34]
Wang J, Xiao Y 2017 Current Protocols in Bioinformatics 57 5.9.1
[35]
Wang J, Wang J, Huang Y, Xiao Y 2019 Int. J. Mol. Sci. 20 4116
[36]
Gong Z, Zhao Y, Xiao Y 2010 J. Biomol. Struc. Dyn. 28 431
[37]
Zhao Y, Zhou G, Xiao Y 2011 J. Biomol. Struc. Dyn. 28 815
[38]
Sharma S, Ding F, Dokholyan N V 2008 Bioinformatics 24 1951
[39]
Krokhotin A, Houlihan K, Dokholyan N V 2015 Bioinformatics 31 2891
[40]
He J, Wang J, Tao H, Xiao Y, Huang S Y 2019 Nucleic Acids Res. 47 W35
[41]
Bao L, Zhang X, Jin L, Tan Z J 2015 Chin. Phys. B 25 018703
[42]
Siegfried N A, Busan S, Rice G M, Nelson J A, Weeks K M 2014 Nat. Methods 11 959
[43]
Harris M E, Christian E L 2009 Methods Enzymol. 468 127
[44]
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T 2010 Cell 141 129
[45]
Zhao J, Ohsumi T K, Kung J T, Ogawa Y, Grau D J, Sarma K, Song J J, Kingston R E, Borowsky M, Lee J T 2010 Mol. Cell 40 939
[46]
Nilsen T W 2014 Cold Spring Harb. Protoc. 2014 683
[47]
Stork C, Zheng S 2018 Reporter Gene Assays Reporter Gene Assays New York Humana Press 1755 65 74
[48]
Shi Y Z, Wu Y Y, Wang F H, Tan Z J 2014 Chin. Phys. B 23 078701
[49]
Yang Y, Gu Q, Zhang B G, Shi Y Z, Shao Z G 2018 Chin. Phys. B 27 038701
[50]
Mueller F, Döring T, Erdemir T, Greuer B, Jünke N, Osswald M, Rinke-Appel J, Stade K, Thamm S, Brimacombe R 1995 Biochem. Cell Biol. 73 767
[51]
Massire C, Westhof E 1998 J. Mol. Graph. Model. 16 197
[52]
Jossinet F, Westhof E 2005 Bioinformatics 21 3320
[53]
Martinez H M, Maizel J V Jr, Shapiro B A 2008 J. Biomol. Struct. Dyn. 25 669
[54]
Jossinet F, Ludwig T E, Westhof E 2010 Bioinformatics 26 2057
[55]
Cao S, Chen S J 2005 RNA 11 1884
[56]
Parisien M, Major F 2008 Nature 452 51
[57]
Flores S C, Altman R B 2010 RNA 16 1769
[58]
Rother M, Rother K, Puton T, Bujnicki J M 2011 Nucleic Acids Res. 39 4007
[59]
Biesiada M, Purzycka K J, Szachniuk M, Blazewicz J, Adamiak R W 2016 RNA Structure Determination New York Humana Press 1490 199 215
[60]
Das R, Baker D 2007 Proc. Natl. Acad. Sci. USA 104 14664
[61]
Jonikas M A, Radmer R J, Laederach A, Das R, Pearlman S, Herschlag D, Altman R B 2009 RNA 15 189
[62]
Das R, Karanicolas J, Baker D 2010 Nat. Methods 7 291
[63]
Boniecki M J, Lach G, Dawson W K, Tomala K, Lukasz P, Soltysinski T, Rother K M, Bujnicki J M 2016 Nucleic Acids Res. 44 e63
[64]
Gutell R R, Power A, Hertz G Z, Putz E J, Stormo G D 1992 Nucleic Acids Res. 20 5785
[65]
Freyhult E, Moulton V, Gardner P 2005 Appl. Bioinformatics 4 53
[66]
Dunn S D, Wahl L M, Gloor G B 2008 Bioinformatics 24 333
[67]
Edgar R C 2004 Nucleic Acids Res. 32 1792
[68]
Chenna R, Sugawara H, Koike T, Lopez R, Gibson T J, Higgins D G, Thompson J D 2003 Nucleic Acids Res. 31 3497
[69]
Higgins D G, Sharp P M 1988 Gene 73 237
[70]
Katoh K, Kuma K, Toh H, Miyata T 2005 Nucleic Acids Res. 33 511
[71]
Edgar R C, Batzoglou S 2006 Curr. Opin. Struc. Biol. 16 368
[72]
Notredame C, Higgins D G, Heringa J 2000 J. Mol. Biol. 302 205
[73]
Lassmann T 2020 Bioinformatics 36 1928
[74]
Morcos F, Pagnani A, Lunt B, Bertolino A, Marks D S, Sander C, Zecchina R, Onuchic J N, Hwa T, Weigt M 2011 Proc. Natl. Acad. Sci. USA 108 E1293
[75]
De Leonardis E, Lutz B, Ratz S, Cocco S, Monasson R, Schug A, Weigt M 2015 Nucleic Acids Res. 43 10444
[76]
Weinreb C, Riesselman A J, Ingraham J B, Gross T, Sander C, Marks D S 2016 Cell 165 963
[77]
Weigt M, White R A, Szurmant H, Hoch J A, Hwa T 2009 PNAS. 106 67
[78]
Weinreb C, Riesselman A J, Ingraham J B, Gross T, Sander C, Marks D S 2016 Cell 165 963
[79]
Jian Y, Wang X, Qiu J, Wang H, Liu Z, Zhao Y, Zeng C 2019 BMC Bioinformatics 20 497
[80]
Hinton G E 2012 Neural Networks: Tricks of the Trade Berlin, Heidelberg Springer 7700 599 619
[81]
De Vries S J, Van Dijk M, Bonvin A M J J 2010 Nat. Protoc. 5 883
[82]
Trott O, Olson A J 2010 J. Comput. Chem. 31 445
[83]
Dominguez C, Boelens R, Bonvin A M 2003 J. Am. Chem. Soc. 125 1731
[84]
He J, Tao H, Huang S Y 2019 Bioinformatics 35 4994
[85]
Zeng P, Li J, Ma W, Cui Q 2015 Sci. Rep. 5 9179
[86]
Zeng P, Cui Q 2016 Sci. Rep. 6 19016
[87]
Wang K, Jian Y, Wang H, Zeng C, Zhao Y 2018 Bioinformatics 34 3131
[88]
Tuvshinjargal N, Lee W, Park B, Han K 2015 Comput. Meth. Prog. Bio. 120 3
[89]
Tuvshinjargal N, Lee W, Park B, Han K 2016 Biosystems 139 17
[90]
He X, Jun Wang, Wang J, Xiao Y 2020 Chin. Phys. B 29 078702
[91]
Griffithsjones S, Bateman A, Marshall M, Khanna A, Eddy S R 2003 Nucleic Acids Res. 31 439
[92]
Schulze-Gahmen U, Echeverria I, Stjepanovic G, Bai Y, Lu H, Schneidman-Duhovny D, Doudna J A, Zhou Q, Sali A, Hurley J H 2016 Elife 5 e15910
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[6] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[7] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[8] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[9] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[10] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[11] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[12] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[13] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[14] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[15] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
No Suggested Reading articles found!