Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050701    DOI: 10.1088/1674-1056/abd691
GENERAL Prev   Next  

Phase transition of shocked water up to 6 GPa: Transmittance investigation

Lang Wu(吴浪)1,2, Yue-Hong Ren(任月虹)1,2, Wen-Qiang Liao(廖文强)1,2, Xi-Chen Huang(黄曦晨)1,2, Fu-Sheng Liu(刘福生)1,2, Ming-Jian Zhang(张明建)1,2, and Yan-Yun Sun(孙燕云)1,2,†
1 Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
2 Sichuan Provincial Key Laboratory(for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
Abstract  The phase transition behaviors of the shocked water are investigated by employing an optical transmittance in-situ detection system. Based on the light scattering theory and phase transformation kinetics, the phase transition mechanism of the water under multiple shocks is discussed. The experimental data indicate that the evolution of the transmittance of the shocked water can be broadly divided into three stages: relaxation stage, decline stage, and recovery stage. In the early stage of the phase transition, the new phase particles began to form around the quartz/window interface. It should be mentioned that the water/ice phase boundary seems to move toward the liquid region in one experiment of this work. Due to the new phase core being much smaller than the wavelength of the incident light, the transmittance of the sample within the relaxation stage remains steady. The decline stage can be divided into the rapid descent stage and the slow descent stage in this work, which is considered as the different growth rates of the new phase particle under different shock loadings. The recovery stage is attributed to the emergence of the new phase particles which are bigger than the critical value. However, the influence of the size growth and the population growth of the new phase particles on the transmittance restrict each other, which may be responsible for the phenomenon that the transmittance curve does not return to the initial level.
Keywords:  phase transition      shocked water      multiple compresses      transmittance      scattering  
Received:  05 September 2020      Revised:  04 December 2020      Accepted manuscript online:  24 December 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  64.60.Bd (General theory of phase transitions)  
  42.25.Fx (Diffraction and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604271).
Corresponding Authors:  Yan-Yun Sun     E-mail:

Cite this article: 

Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云) Phase transition of shocked water up to 6 GPa: Transmittance investigation 2021 Chin. Phys. B 30 050701

[1] Ehrenfreund P, Fraser H J, Blum J, Cartwright J H E, Garciaruiz J M, Hadamcik E, Levasseurregourd A C, PriceS D, Prodi F and Sarkissian A 2003 Planet Space Sci. 51 473
[2] Falenty A, Hansen T C and Kuhs W F 2014 Nature 516 231
[3] Whalley E, Davidson D W and Heath J B R 1966 J. Chem. Phys. 45 3976
[4] Lebel L S, Brousseau P, Erhardt L and Andrews W S 2014 Combust Flame. 161 1038
[5] Lee K K M, Benedetti L R, Jeanloz R, Celliers P M, Eggert J H, Hicks D G, Moon S J, Mackinon A, Silva L B D, Bradley D K, Unites W, Collins G W, Henry E, Koenig M, BenuzzimounaixA, Pasley J and Neely D 2006 J. Chem. Phys. 125 014701
[6] Smyth J R, Holl C M, Frost D J and Jacobsen S D 2004 Phys. Earth Planet. Inter. 143 271
[7] Tulk C A, Benmore C J, Urquidi J, Klug D D, Neuefeind J, Tomberli B and Egelstaff P A 2002 Science 297 1320
[8] Poole P H, Sciortino F, Essmann U and Stanley H E 1992 Nature 360 324
[9] Palmer J C, Martelli F, Liu Y, Car R, Panagiotopoulos A Z and Debenedetti P G 2014 Nature 510 385
[10] Nellis W J 2006 Rep. Prog. Phys. 69 1479
[11] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 Science 296 1681
[12] Christian J W and Otte H M 2003 Mater. Today 6 53
[13] Dolan D H and Gupta Y M 2004 AIP Conference Proceedings 706 167
[14] Walsh J M and Rice M H 1957 J. Chem. Phys. 26 815
[15] Bastea M, Bastea S, Reaugh J E and Reisman D B 2007 Phys. Rev. B 75 172104
[16] Dolan D H and Gupta Y M 2004 J. Chem. Phys. 121 9050
[17] Dolan D H and Gupta Y M 2003 Chem. Phys. Lett. 374 608
[18] Ren Y H, Wu L, Fan Z N, Wang Y G, Liu F S, Chen J Y, Zhang M J and Sun Y Y 2019 Europhys. Lett. 128 20003
[19] Dolan D H, Knudson M D, Hall C A and Deeney C 2007 Nat. Phys. 3 339
[20] Apetz R and Bruggen M P B V 2003 J. Am. Ceram. Soc. 86 480
[21] Chau R, Mitchell A C, Minich R W and Nellis W J 2001 J. Chem. Phys. 114 1361
[22] Gaedner A S and Sharp M J 2010 J. Geophys. Res-Earth. 115 F1
[23] Batani D, Morelli A, Tomasini M, Mounaix A B, Cathala B 2002 Phys. Rev. Lett. 88 235502
[24] Mishima O, Saito S and Ohmine I 2002 Nature 416 409
[25] Du Q, Freysz E and Shen Y R 1994 Phys. Rev. Lett. 72 238
[26] Ostroverkhov V, Waychunas G A and Shen Y R 2005 Phys. Rev. Lett. 94 046102
[27] Wagner W and Pruss A 2002 J. Phys. Chem. Ref. Data 31 387
[28] Li Y H, Liu F S, Cheng X L, Zhang M J and Xue X D 2011 Acta. Phys. Sin. 60 126202 (in Chinese)
[29] Walsh J M and Christian R H 1955 Phys. Rev. 97 1544
[30] Li Y H 2011 Research on Crystallization of Water Induced by Fused Quartz under Shock Compression, Ph. D Dissertation (Chengdu: Southwest Jiao Tong University) (in Chinese)
[31] Siebert K J 2000 J. Am. Soc. Brew. Chem. 58 97
[32] Fu Q and Sun W 2001 Appl. Opt. 40 1354
[33] Guan Z D, Zhang Z T, and Jiao J S 1992 Physical Properties of Inorganic Materials (Beijing: Tsinghua University Press) pp. 182-186 (in Chinese)
[34] Gleason A E, Bolme C A, Galtier E, Lee H J and Mao W L 2017 Phys. Rev. Lett. 119 025701
[35] Barber P W 1984 J. Colloid. Interf. Sci. 98 290
[36] Myint P C and Belof J L 2018 J. Phys.: Condens. Matter 30 233002
[37] Huber E and Frost M 1998 J. Water. Supply. Res. T. 47 87
[38] Wagner W and Pruss A 1994 J. Phys. Chem. Ref. Data 23 515
[39] Pistorius C W F T, Rapoport E and Clark J B 1968 J. Chem. Phys. 48 5509
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[5] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[6] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[7] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[8] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[9] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[10] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[11] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[12] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[13] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[14] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[15] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
No Suggested Reading articles found!