INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influences of supply voltage on single event upsets and multiple-cell upsets in nanometer SRAM across a wide linear energy transfer range |
Yin-Yong Luo(罗尹虹)†, Wei Chen(陈伟), Feng-Qi Zhang(张凤祁), and Tan Wang(王坦) |
1 State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China |
|
|
Abstract The influences of reducing the supply voltage on single event upset (SEU) and multiple-cell upset (MCU) in two kinds of 65-nm static random access memories (SRAMs) are characterized across a wide linear energy transfer (LET) range. The results show that the influence of the voltage variation on SEU cross section clearly depends on the LET value which is above heavy ion LET threshold no matter whether the SRAM is non-hardened 6T SRAM or radiation-hardened double dual interlocked cells (DICE) SRAM. When the LET value is lower than the LET threshold of MCU, the SEU only manifests single cell upset, the SEU cross section increases with the decrease of voltage. The lower the LET value, the higher the SEU sensitivity to the voltage variation is. Lowering the voltage has no evident influence on SEU cross section while the LET value is above the LET threshold of MCU. Moreover, the reduction of the voltage can result in a decrease in the highest-order MCU event cross section due to the decrease of charge collection efficiency of the outer sub-sensitive volume within a certain voltage range. With further scaling the feature size of devices down, it is suggested that the dependence of SEU on voltage variation should be paid special attention to for heavy ions with very low LET or the other particles with very low energy for nanometer commercial off-the-shelf (COTS) SRAM.
|
Received: 28 July 2020
Revised: 23 October 2020
Accepted manuscript online: 01 December 2020
|
PACS:
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
61.80.Az
|
(Theory and models of radiation effects)
|
|
21.60.Ka
|
(Monte Carlo models)
|
|
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 11690043 and 11690040). |
Corresponding Authors:
†Corresponding author. E-mail: lyhrain@126.com
|
Cite this article:
Yin-Yong Luo(罗尹虹), Wei Chen(陈伟), Feng-Qi Zhang(张凤祁), and Tan Wang(王坦) Influences of supply voltage on single event upsets and multiple-cell upsets in nanometer SRAM across a wide linear energy transfer range 2021 Chin. Phys. B 30 048502
|
1 Correas V, Saigné F, Sagnes B, Wrobel F, Boch J, Gasiot G and Roche P 2009 IEEE Trans. Nucl. Sci. 56 2050 2 Giot D, Roche P, Gasiot G, Autran J L and Harboe-Sørensen R 2008 IEEE Trans. Nucl. Sci. 55 2048 3 Chang I J, Kim J J, Park S P and Roy K2009 IEEE J. Solid-State Circuits 44 650 4 Tu M H, Lin J Y, Tsai M C, Lu C Y, Lin Y J, Wang M H, Huang H S, Lee K D, Shih W C, Jou S J and Chuang C T 2012 IEEE J. Solid-State Circuits. 47 1469 5 Roche P, Gasiot G, Forbes K, Sullivan V O and Ferlet V 2003 IEEE Trans. Nucl. Sci. 50 2046 6 Merelle T, Saigne F, Sagnes B, Gasiot G, RochePh, Carriere T, Palau M C, Wrobel F and Palau J M 2005 IEEE Trans. Nucl. Sci. 52 1538 7 Hassan Galib M M, Chang I J and Kim J 2015 IEEE Trans. Nucl. Sci. 62 1349 8 Cannon E H, Cabanas-Holmen M, Wert J, Amort T, Brees R, Koehn J, Meaker B and Normand E 2010 IEEE Trans. Nucl. Sci. 57 3493 9 Sierawski B D, Mendenhall M H, Reed R A, Clemens M A, Weller R A, Schrimpf R D, Blackmore E W, Trinczek M, Hitti B, Pellish J A, Baumann R C, Wen S J, Wong R and Tam N 2010 IEEE Trans. Nucl. Sci. 57 3273 10 Kobayashi D, Hayashi N, Hirose K, Kakehashi Y, Kawasaki O, Makino T, Ohshima T, Matsuura D, Mori Y, Kusano M, Narita T, Ishii S and Masukawa K 2019 IEEE Trans. Nucl. Sci. 66 155 11 Kauppila J S, Kay W H, Haeffner T D, Rauch D L, Assis T R, Mahatme N N, Gaspard N J, Bhuva B L, Alles M L, Holman W T and Massengill L W 2015 IEEE Trans. Nucl. Sci. 62 2613 12 Harrington R C, Kauppila J S, Maharrey J A, Haeffner T D, Sternberg A L, Zhang EX, Ball D R, Nsengiyumva P, Bhuva B L and Massengill L W 2019 IEEE Trans. Nucl. Sci. 66 1427 13 Trippe J M, Reed R A, Austin R A, Sierawski B D, Weller R A, Funkhouser E D, King M P, Narasimham B, Bartz B, Baumann R, Labello J, Nichols J, Schrimpf R D and Weeden-Wright S L 2015 IEEE Trans. Nucl. Sci. 62 2709 14 Fuketa H, Hashimoto M, Mitsuyama Y and Onoye T 2011 IEEE Trans. Nucl. Sci. 58 2097 15 Fuketa H, Hashimoto M, Mitsuyama Y and Onoye T 2010 IEEE Int. Reliab. Phys. Symp. 213 16 Gasiot G, Giot D and Roche P 2006 IEEE Trans. Nucl. Sci. 53 3479 17 Tipton A D2008 On the impact of device orientation on the multiple cellupset radiation response in nanoscale integrated circuits, Ph. D. dissertation (Nashville: Vanderbilt University) 18 Tipton A D, Pellish J A, Hutson J M, Baumann R, Deng X W, Marshall A, Xapsos M A, Kim H S, Friendlich M R, Campola M J, Seidleck C M, LaBel K A, Mendenhall M H, Reed R A, Schrimpf R D, Weller R A and Black J D 2008 IEEE Trans. Nucl. Sci. 55 2880 19 Giot D, Roche P, Gasiot G and Harboe-Sørensen R 2007 IEEE Trans. Nucl. Sci. 54 904 20 Gorbunov MS, Boruzdina AB, Dolotov PS, Zebrev G I, Emeliyanov V V, Boruzdina A B, Petrov A G and UlanovaA V 2014 IEEE Trans. Nucl. Sci. 61 1575 21 Sierawski B D, Pellish J A, Reed R A, Schrimpf R D, Warren K M, Weller R A, Mendenhall M H, Black J D, Tipton A D, Xapsos M A, Baumann R C, Deng X W, Campola M J, Friendlich MR, Kim H S, Phan A M and Seidleck C M 2009 IEEE Trans. Nucl. Sci. 56 3085 22 Warren K M, Sierawski B D, Weller R A, Reed R A, Mendenhall M H, Pellish J A, Schrimpf R D, Massengill L W, Porter M E and Wilkinson J D 2007 IEEE Electron Dev. Lett. 28 180 23 Abadir G B, Fikry W, Ragai H F and OmarA O A 2007 IEEE Trans. Nucl. Sci. 52 1518 24 Barak J, Haran A, Adler E, Azoulay M, Levinson J, Zentner A, David D, Fischer B E, Heiss M and Betel D 2004 IEEE Trans. Nucl. Sci. 51 3486 25 Fageeha o, Howard J and Block FL C 1994 J. Appl. Phys. 75 2317 26 Amusan O A, Witulski A F, Massengill LW, Bhuva B L, Fleming P R, Alles M L, Sternberg A L, Black J D and Schrimpf R D 2006 IEEE Trans. Nucl. Sci. 53 3253 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|