Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 125101    DOI: 10.1088/1674-1056/abb669
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules

Lijuan Yan(闫丽娟)†, Jianmei Shao(邵健梅), and Yongqiang Li(李永强)‡
College of Electronics & Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
Abstract  The non-spherical lowest-lying Lin (n=15-17) isomers were found with high symmetric compact structures, of which the stability was not rationalized in a previous report (J. Chem. Phys. 119 9444 (2003)). Based on the newly proposed super-valence bond model, the three prolate lithium clusters can be viewed as magnetic superatomic molecules, which are composed by sharing valence electron pairs and nuclei between two superatom units, namely, Li10 or Li11, and thus their stability can be given a good understanding. Molecular orbital and chemical bonding analysis clearly reveal that the Lin (n=15-17) clusters with prolate shapes are magnetic superatomic molecules. Our work may aid in the developments of the cluster-assembled materials or superatom-bonds.
Keywords:  jellium model      geometry and electronic shells      magnetic properties      stability      electron delocalization  
Received:  03 August 2020      Revised:  25 August 2020      Accepted manuscript online:  09 September 2020
PACS:  51.60.+a (Magnetic properties)  
  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.A- (Ab initio calculations)  
  31.15.xw (Valence bond calculations)  
Fund: Project supported by the PhD Starting Fund of Guangdong Ocean University (Grant No. 120702/R17077) and the National Natural Science Foundation of China (Grant No. 11704080).
Corresponding Authors:  Corresponding author. E-mail: ylj_gdou@126.com Corresponding author. E-mail: lyq196399@163.com   

Cite this article: 

Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强) Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules 2020 Chin. Phys. B 29 125101

[1] Lewis G N J. Am. Chem. Soc. 38 762 DOI: 10.1021/ja02261a0021916
[2] Langmuir I Science 54 59 DOI: 10.1126/science.54.1386.591921
[3] Sidgwick N V and Bailey R W Proc. Roy. Soc. Lond. A 144 521 DOI: 10.2307/29355421934
[4] Mingos D M P J. Chem. Soc. Dalton Trans. 7 1163 DOI: 10.1039/DT97600011631976
[5] Wade K J. Chem. Soc. D 15 792 DOI: 10.1039/C297100007921971
[6] Randic M J. Am. Chem. Soc. 99 444 DOI: 10.1021/ja00444a0221977
[7] Stone A J Inorg. Chem. 20 563 DOI: 10.1021/ic50216a0491981
[8] Ekardt W Phys. Rev. B 29 1558 DOI: 10.1103/PhysRevB.29.15581984
[9] Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y and Cohen M L Phys. Rev. Lett. 52 2141 DOI: 10.1103/PhysRevLett.52.21411984
[10] Brack M Rev. Mod. Phys. 65 677 DOI: 10.1103/RevModPhys.65.6771993
[11] de Heer W A Rev. Mod. Phys. 65 611 DOI: 10.1103/RevModPhys.65.6111993
[12] Xu W W, Zhu B, Zeng X C and Gao Y Nat. Commun. 7 13574 DOI: 10.1038/ncomms135742016
[13] Walter M, Akola J, Lopez-Acevedo O, Jadzinsky P D, Calero G, Ackerson C J, Whetten R L, Grönbeck H and Häkkinen H Proc. Natl. Acad. Sci. USA 105 9157 DOI: 10.1073/pnas.08010011052008
[14] Zhu M, Aikens C M, Hollander F J, Schatz G C and Jin R J. Am. Chem. Soc. 130 5883 DOI: 10.1021/ja801173r2008
[15] Jiang D E, Whetten R L, Luo W and Dai S J. Phys. Chem. C 113 17291 DOI: 10.1021/jp90359372009
[16] Xie J, Zheng Y and Ying J Y J. Am. Chem. Soc. 131 888 DOI: 10.1021/ja806804u2009
[17] Jiang D E, Walter M and Akola J J. Phys. Chem. C 114 15883 DOI: 10.1021/jp90973422010
[18] Hakkinen H Nat. Chem. 4 443 DOI: 10.1038/nchem.13522012
[19] Clemenger K Phys. Rev. B 32 1359 DOI: 10.1103/PhysRevB.32.13591985
[20] Cheng L and Yang J J. Chem. Phys. 138 141101 DOI: 10.1063/1.48018602013
[21] Cheng L, Ren C, Zhang X and Yang J Nanoscale 5 1475 DOI: 10.1039/c2nr32888g2013
[22] Yuan Y, Cheng L and Yang J J. Phys. Chem. C 117 13276 DOI: 10.1021/jp402816b2013
[23] Yan L J. Phys. Chem. A 123 5517 DOI: 10.1021/acs.jpca.9b018552019
[24] Wang H and Cheng L Nanoscale 9 13209 DOI: 10.1039/C7NR03114A2017
[25] Liu L, Li P, Yuan L F, Cheng L and Yang J Nanoscale 8 12787 DOI: 10.1039/C6NR01998F2016
[26] Yan L, Cheng L and Yang J Chin. J. Chem. Phys. 28 476 DOI: 10.1063/1674-0068/28/cjcp15051052015
[27] Yan L, Cheng L and Yang J J. Phys. Chem. C 119 23274 DOI: 10.1021/acs.jpcc.5b079172015
[28] Lv J, Wang Y, Zhu L and Ma Y J. Chem. Phys. 137 084104 DOI: 10.1063/1.47467572012
[29] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, et al.2016 Gaussian 16, Revision B.01, Gaussian, Inc.: Wallingford, Ct.
[30] Perdew J P and Wang Y Phys. Rev. B 45 13244 DOI: 10.1103/PhysRevB.45.132441992
[31] Zhao Y and Truhlar D G J. Chem. Phys. 125 194101 DOI: 10.1063/1.23709932006
[32] Grimme S, Antony J, Ehrlich S and Krieg H J. Chem. Phys. 132 154104 DOI: 10.1063/1.33823442010
[33] Hay P J and Wadt W R J. Chem. Phys. 82 270 DOI: 10.1063/1.4487991985
[34] Lu T and Chen F J. Comput. Chem. 33 580 DOI: 10.1002/jcc.v33.52012
[35] Fournier R, Cheng J B Y and Wong A J. Chem. Phys. 119 9444 DOI: 10.1063/1.16152372003
[36] Dugourd P, Rayane D, Labastie P, Vezin B, Chevaleyre J and Broyer A M Chem. Phys. Lett. 197 433 DOI: 10.1016/0009-2614(92)85796-D1992
[37] Khanna S N, Rao B K and Jena P2002 Phys. Rev. B 65
[38] Gong X G and Zheng Q Q Phys. Rev. B 52 4756 DOI: 10.1103/PhysRevB.52.47561995
[39] Zhang X, Wang Y, Wang H, Lim A, Gantefoer G, Bowen K H, Reveles J U and Khanna S N J. Am. Chem. Soc. 135 4856 DOI: 10.1021/ja400830z2013
[40] Pradhan K, Reveles J U, Sen P and Khanna S N J. Chem. Phys. 132 124302 DOI: 10.1063/1.33677222010
[41] Medel V M, Reveles J U, Khanna S N, Chauhan V, Sen P and Castleman A W Proc. Natl. Acad. Sci. USA 108 10062 DOI: 10.1073/pnas.11001291082011
[42] Aguado A J. Phys. Chem. C 116 6841 DOI: 10.1021/jp21191792012
[43] Vasquez-Perez J M, Gamboa G U, Mejia-Rodriguez D, Alvarez-Ibarra A, Geudtner G, Calaminici P and Koster A M J. Phys. Chem. Lett. 6 4646 DOI: 10.1021/acs.jpclett.5b019832015
[44] Reber A C and Khanna S N Acc. Chem. Res. 50 255 DOI: 10.1021/acs.accounts.6b004642017
[45] Luo Z and Castleman A W Acc. Chem. Res. 47 2931 DOI: 10.1021/ar50015832014
[46] Zubarev D Y and Boldyrev A I Phys. Chem. Chem. Phys. 10 5207 DOI: 10.1039/b804083d2008
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[14] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!