ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of few-cycle laser pulses: Comparison between atomic and molecular gases in a hollow-core fiber |
Zhi-Yuan Huang(黄志远)1,2, Ye Dai(戴晔)1, Rui-Rui Zhao(赵睿睿)2, Ding Wang(王丁)2, Yu-Xin Leng(冷雨欣)2 |
1 Department of Physics, Shanghai University, Shanghai 200444, China;
2 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber. From the perspective of self-phase modulation (SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation (MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values.
|
Received: 11 December 2015
Revised: 29 February 2016
Accepted manuscript online:
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204328, 61221064, 61078037, 11127901, 11134010, and 61205208), the National Basic Research Program of China (Grant No. 2011CB808101), and the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1414800). |
Corresponding Authors:
Ding Wang, Yu-Xin Leng
E-mail: wangding@siom.ac.cn;lengyuxin@siom.ac.cn
|
Cite this article:
Zhi-Yuan Huang(黄志远), Ye Dai(戴晔), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣) Generation of few-cycle laser pulses: Comparison between atomic and molecular gases in a hollow-core fiber 2016 Chin. Phys. B 25 074205
|
[1] |
Zhou J, Peatross J, Murnane M M, Kapteyn H C and Christov I P 1996 Phys. Rev. Lett. 76 752
|
[2] |
Scrinzi A, Ivanov M Y, Kienberger R and Villeneuve D M 2006 J. Phys. B 39 R1
|
[3] |
Krausz F and Ivanov M 2009 Rev. Modern Phys. 81 163
|
[4] |
Zewail A H 1988 Science 242 1645
|
[5] |
Suzuki T, Minemoto S, Kanai T and Sakai H 2004 Phys. Rev. Lett. 92 133005
|
[6] |
Liu Y, Liu X, Deng Y, Wu C, Jiang H B and Gong Q H 2011 Phys. Rev. Lett. 106 073004
|
[7] |
Nisoli M, Silvestri S D and Svelto O 1996 Appl. Phys. Lett. 68 2793
|
[8] |
Nisoli M, Silvestri S D, Svelto O, Szipocs R, Ferencz K, Spielmann C, Sartania S and Krausz F 1997 Opt. Lett. 22 522
|
[9] |
Chen X W, Jullien A, Malvache A, Canova L, Borot A, Trisorio A, Durfee C G and Lopez-Martens R 2009 Opt. Lett. 34 1588
|
[10] |
Bohman S, Suda A, Kanai T, Yamaguchi S and Midorikawa K 2010 Opt. Lett. 35 1887
|
[11] |
Klenke A, Kienel M, Eidam T, Hadrich S, Limpert J and Tunnermann A 2013 Opt. Lett. 38 4593
|
[12] |
Jacqmin H, Jullien A, Mercier B, Hanna M, Druon F, Papadopoulos D and Lopez-Martens R 2015 Opt. Lett. 40 709
|
[13] |
Zhu J F, Wang P, Han H N, Teng H and Wei Z 2008 Sci. China Phys. Mech. 51 507
|
[14] |
Wittmann M, Nazarkin A and Korn G 2000 Phys. Rev. Lett. 84 5508
|
[15] |
Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M and Kapteyn H C 2001 Phys. Rev. Lett. 88 013903
|
[16] |
Zhavoronkov N and Korn G 2002 Phys. Rev. Lett. 88 203901
|
[17] |
Kalosha V, Spanner M, Herrmann J and Ivanov M 2002 Phys. Rev. Lett. 88 103901
|
[18] |
Zhong F, Jiang H B and Gong Q H 2009 Opt. Express 17 1472
|
[19] |
Wang F, Jiang H B and Gong Q H 2012 J. Opt. Soc. Am. B 29 232
|
[20] |
Cai H, Wu J, Couairon A and Zeng H P 2009 Opt. Lett. 34 827
|
[21] |
Bustard P J, Sussman B J and Walmsley I A 2010 Phys. Rev. Lett. 104 193902
|
[22] |
Li M, Pan H, Tong Y, Chen C, Shi Y, Wu J and Zeng H P 2011 Opt. Lett. 36 3633
|
[23] |
Wang F, Jiang H B and Gong Q H 2014 Chin. Phys. B 23 014201
|
[24] |
Huang Z Y, Wang D, Leng Y X and Dai Y 2015 Phys. Rev. A 91 043809
|
[25] |
Huang Z Y, Wang D, Leng Y X and Dai Y 2015 Opt. Express 23 17711
|
[26] |
Courtois C, Couairon A, Cros B, Marques J R and Matthieussent G 2001 Phys. Plasmas 8 3445
|
[27] |
Huang Z Y, Leng Y X and Dai Y 2014 Chin. Phys. B 23 124210
|
[28] |
Huang Z Y, Wang D, Leng Y X and Dai Y 2015 Chin. Phys. B 24 014212
|
[29] |
Bergé L, Skupin S, Nuter R, Kasparian J and Wolf J P 2007 Rep. Prog. Phys. 70 1633
|
[30] |
Nubling R K and Harrington J A 1998 Opt. Eng. 37 2454
|
[31] |
Pinault S C and Potasek M J 1985 J. Opt. Soc. Am. B 2 1318
|
[32] |
Agrawal G P 2007 Nonlinear Fiber Optics (New York) p. 65
|
[33] |
Wang Y, Dai X, Wu J, Ding L and Zeng H P 2010 Appl. Phys. Lett. 96 031105
|
[34] |
Huang Z Y, Wang D, Leng Y X and Dai Y 2015 Chem. Phys. Lett. 627 53
|
[35] |
Wu J, Cai H, Couairon A and Zeng H P 2009 Phys. Rev. A 79 063812
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|