Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124211    DOI: 10.1088/1674-1056/abbbf4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Interference effect on the liquid-crystal-based Stokes polarimeter

Jun-Feng Hou(侯俊峰)1,2,†, Dong-Guang Wang(王东光)1, Yuan-Yong Deng(邓元勇)1,2, Zhi-Yong Zhang(张志勇)1,2, and Ying-Zi Sun(孙英姿)1
1 Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; 2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 101408, China
Abstract  The Stokes polarimeter based on liquid crystal variable retarders (LCVRs) is envisaged as a promising novel technique for polarization measurement in space applications due to the inherent advantage of eliminating the need for conventional rotating polarizing optics and increasing the measuring speed. However, the intrinsic multi-beam interference in LCVRs limits its polarization accuracy by several percent. How to eliminate the influence of the interference effect becomes an urgent issue for the liquid-crystal-based Stokes polarimeter. The present study introduces a simplified but effective interference model based on the thin-film optics and polarized light theory to simulate the relationship between the interference effect of the LCVRs-based Stokes polarimeter and the polarization accuracy. The simulation results show that the transmittance variation of LCVR with the derived voltage is caused by multi beam interference between the indium tin oxide (ITO) film and the liquid crystal within LCVR, which produces a few percent of instrumental polarization. The instrumental polarization is about 0.01 and different for different wavelengths. An optimization method was proposed to reduce the instrumental polarization to 0.002, effectively improving the polarization sensitivity of the Stokes polarimeter limited by the interference. In addition, an experimental setup was built up to measure and analyze the influence of the interference effect of the LCVRs-based Stokes polarimeter on the polarization accuracy before and after the optimization. The experiment results are in good agreement with the simulation.
Keywords:  polarimetry      liquid crystal variable retarder (LCVR)      interference effect  
Received:  23 July 2020      Revised:  09 September 2020      Accepted manuscript online:  28 September 2020
PACS:  42.70.Df (Liquid crystals)  
  95.75.Hi (Polarimetry)  
  95.55.Qf (Photometric, polarimetric, and spectroscopic instrumentation)  
  95.55.Ev (Solar instruments)  
Fund: Project supported by the Strategic Pioneer Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA15010800 and XDA15320102) and the National Natural Science Foundation of China (Grant Nos. 11427901, 11773040, 11403047, and 11427803).
Corresponding Authors:  Corresponding author. E-mail: jfhou@bao.ac.cn   

Cite this article: 

Jun-Feng Hou(侯俊峰), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇), Zhi-Yong Zhang(张志勇), and Ying-Zi Sun(孙英姿) Interference effect on the liquid-crystal-based Stokes polarimeter 2020 Chin. Phys. B 29 124211

[1] Clevers J G P W ISPRS J. Photogrammetry Remote Sens. 54 299 DOI: 10.1016/S0924-2716(99)00033-71999
[2] Hagen N and Kudenov M W Opt. Eng. 52 090901 DOI: 10.1117/1.OE.52.9.0909012013
[3] Curran P J Prog. Phys. Geography: Earth Environ. 18 247 DOI: 10.1177/0309133394018002041994
[4] Demos S G and Alfano R R Appl. Opt. 36 150 DOI: 10.1364/AO.36.0001501997
[5] Tyo J S, Goldstein D L, Chenault D B and Shaw J A Appl. Opt. 45 5453 DOI: 10.1364/AO.45.0054532006
[6] Du P, Samat A, Waske B, Liu S and Li Z ISPRS J. Photogrammetry Remote Sens. 105 38 DOI: 10.1016/j.isprsjprs.2015.03.0022015
[7] Stenflo J O Reports on Progress in Physics 41 865 DOI: 10.1088/0034-4885/41/6/0021978
[8] Tinbergen J Astronomical polarimetry (Cambridge: Cambridge University Press) p. 5 DOI: 10.1088/0957-0233/8/2/0182005
[9] Snik F and Keller C U Astronomical Polarimetry: Polarized Views of Stars and Planets(Dordrecht: Springer) pp. 175-221 DOI: 10.1007/978-94-007-5618-2_42013
[10] Ichimoto K, Lites B and Elmore D Sol. Phys. 249 233 DOI: 10.1007/s11207-008-9169-92008
[11] Schou J, Borrero J M and Norton A A Sol. Phys. 275 327 DOI: 10.1007/s11207-010-9639-82012
[12] Hipps K W and Crosby G A J. Phys. Chem. 83 555 DOI: 10.1021/j100468a0011979
[13] Diner D J, Davis A, Hancock B, Gutt G, Chipman R A and Cairns B Appl. Opt. 46 8428 DOI: 10.1364/AO.46.0084282007
[14] Wiehr E Astron. Astrophys. 95 54 https://ui.adsabs.harvard.edu/abs/1981A&A9554W1981
[15] Hou J F Proc. SPIE, 9099 Polarization: Measurement, Analysis, and Remote Sensing XI, p. 909917 DOI: 10.1117/12.20531962014
[16] Fineschi S, Zangrilli L, Rossi G, Gori L, Romoli M, Corti G, Capobianco G, Antonucci E and Pace E Proc. SPIE, 5901 Solar Physics and Space Weather Instrumentation, p. 59011I DOI: 10.1117/12.6260332005
[17] Shaw J A and Pust N J Appl. Opt. 45 5470 DOI: 10.1364/AO.45.0054702006
[18] Hou J F, Wijn A G D and Tomczyk S Astrophys. J. 774 85 DOI: 10.1088/0004-637X/774/1/852013
[19] PN B, Rust D M, Ha E and Murphy G A Proc. SPIE 4014, Airborne Telescope Systems, p. 214225 DOI: 10.1117/12.3891002000
[20] Pillet V M, del T I J C, Alvarez-Herrero A, et al. Sol. Phys. 268 57 DOI: 10.1007/s11207-010-9644-y2011
[21] Barthol P, Gandorfer A, Solanki S K, et al. Sol. Phys. 268 1 DOI: 10.1007/s11207-010-9662-92011
[22] Mueller D, Marsden R G, StCyr O C, et al. Physics 285 25 https://sci.esa.int/web/solar-orbiter/-/52087-muller-et-al-20132013
[23] Solanki S K, del T I J C, Woch J, et al. Astronomy Astrophysics Accepted DOI: 10.1051/0004-6361/2019353252019
[24] Deng Y Y, Zhang H Y, Yang J F, et al. RAA 19 157 DOI: 10.1088/1674-4527/19/11/1572019
[25] Gan W Q, Ch Z, Deng Y Y, et al. RAA 19 156 DOI: 10.1088/1674-4527/19/11/1562019
[26] Heredero R L, Uribe-Patarroyo N, Belenguer T, Ramos G, Sanchez A, Reina M, Pillet V M and Alvarez-Herrero A Appl. Opt. 45 689 DOI: 10.1364/AO.46.0006892007
[27] Hou J F, Wang H F, Wang G, Luo Y Q, Li H W, Zhang Z L, Wang D G and Deng Y Y Chin. Phys. B. 29 074208 DOI: 10.1088/1674-1056/ab8c402020
[28] Born M and Wolf E1999 Principles of Optics, 7th edn. (Cambridge: Cambridge University Press) pp. 32-59
[29] Xiao X F and Voelz D Proc. SPIE, 5888, Polarization Science and Remote Sensing II, p. 58881J DOI: 10.1117/12.6195452005
[30] Hou J F, Wang D G, Deng Y Y, Sun Y Z and Zhang Z Y Chin. Phys. B 26 089501 DOI: 10.1088/1674-1056/26/8/0895012017
[31] Hou J F, Xu Z, Yuan S, et al. RAA 20 45 DOI: 10.1088/1674-4527/20/4/452020
[1] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[2] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[3] Irradiation study of liquid crystal variable retarder for Full-disk Magneto-Graph payload onboard ASO-S mission
Jun-Feng Hou(侯俊峰), Hai-Feng Wang(王海峰), Gang Wang(王刚), Yong-Quan Luo(骆永全), Hong-Wei Li(李宏伟), Zhen-Long Zhang(张振龙), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇). Chin. Phys. B, 2020, 29(7): 074208.
[4] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[5] Theoretical analysis on fully differential cross sections for C6+ impact ionization of helium
Fang Xiao-Ying (方小英), Zhang Rui-Fang (张瑞芳), Duan Hui-Xiao (段慧晓), Sun Shi-Yan (孙世艳), Jia Xiang-Fu (贾祥富). Chin. Phys. B, 2014, 23(6): 063404.
[6] Tunneling of Boseben–Einstein condensate and interference effect in a harmonic trap with a Gaussian energy barrier
Hua Wei (花巍), Li Bin (李彬), Liu Xue-Shen (刘学深). Chin. Phys. B, 2011, 20(6): 060308.
[7] Interference effects on the photoionization cross sections between two neighbouring atoms: nitrogen as an example
Wu Jian-Hua(吴建华) and Yuan Jian-Min(袁建民) . Chin. Phys. B, 2009, 18(12): 5283-5290.
[8] Electronic transport properties of metallic single-walled carbon nanotubes
Cao Jue-Xian (曹觉先), Yan Xiao-Hong (颜晓红), Xiao Yang (肖杨), Ding Jian-Wen (丁建文). Chin. Phys. B, 2003, 12(12): 1440-1444.
No Suggested Reading articles found!