Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124205    DOI: 10.1088/1674-1056/ac032e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding

Shuai Sun(孙帅)1,2, Wei Shi(史伟)1,2,†, Quan Sheng(盛泉)1,2, Shijie Fu(付士杰)1,2, Zhongbao Yan(闫忠宝)1,2, Shuai Zhang(张帅)1,2, Junxiang Zhang(张钧翔)1,2, Chaodu Shi(史朝督)1,2, Guizhong Zhang(张贵忠)1,2, and Jianquan Yao(姚建铨)1,2
1 Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
2 Key Laboratory of Optoelectronic Information Science and Technology(Ministry of Education), Tianjin University, Tianjin 300072, China
Abstract  Based on the index-induced mode coupling between the higher-order mode in core and the fundamental mode in cladding tubes, the single-mode operation can be realized in any antiresonant fibers (ARFs) when satisfying that the area ratio of cladding tube and core is about 0.46:1, and this area ratio also should be modified according to the shape and the number of cladding tubes. In the ARF with nodal core boundary, the mode in core also can couple with the mode in the wall of core boundary, which can further enhance the suppression of high-order mode. Accordingly, an ARF with conjoint semi-elliptical cladding tubes realizes a loss of higher-order mode larger than 30 dB/m; simultaneously, a loss of fundamental mode loss less than 0.4 dB/m.
Keywords:  terahertz      mode coupling      single-mode fiber  
Received:  19 April 2021      Revised:  14 May 2021      Accepted manuscript online:  20 May 2021
PACS:  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.81.-i (Fiber optics)  
  95.85.Gn (Far infrared (10-300 μm))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62075159), the National Key Research and Development Program of China (Grant No. 2017YFF0104603), the 111 Project of China (Grant No. B17031), and the Major Scientific and Technological Innovation Projects of Key Research and Development Plans in Shandong Province, CHina (Grant No. 2019JZZY020206).
Corresponding Authors:  Wei Shi     E-mail:  shiwei@tju.edu.cn

Cite this article: 

Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨) Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding 2021 Chin. Phys. B 30 124205

[1] Zhong K, Shi W, Xu D, Liu P, Wang Y, Mei J, Yan C, Fu S and Yao J 2017 Sci. China- Technol. Sci. 60 1801
[2] Yu F and Knight J C 2016 IEEE J. Sel. Top. Quantum 22 146
[3] Belardi W and Knight J C 2013 Opt. Express 21 21912
[4] Vincetti L 2009 Opt. Fiber Technol. 15 398
[5] Poletti F 2014 Opt. Express 22 23807
[6] Gao S F, Wang Y Y, Ding W, Jiang D L, Gu S, Zhang X and Wang P 2018 Nat. Commun. 9 2828
[7] Nampoothiri A V V, Jones A M, Baumgart B, Washburn B R, Fourcadedutin C, Mao C, Benabid F, Corwin K L, Alharbi M and Dadashzadeh N J O M E 2014 Opt. Mater. Express 2 948
[8] Jones A M, Nampoothiri A V V, Ratanavis A, et al. 2011 Opt. Express 19 2309
[9] Habib M S, Bang O and Bache M 2016 Opt. Express 24 8429
[10] Gao S F, Wang Y Y, Liu X L, Ding W and Wang P 2016 Opt. Express 24 14801
[11] Meng F C, Liu B W, Li Y F, Wang C Y and Hu M L 2017 IEEE Photon. J. 9 1
[12] Yan S, Lou S, Wang X, Zhao T and Zhang W 2018 Opt. Quantum Electron. 50 162
[13] Yu T Y, Liu X and Fan Z W 2018 IEEE Photon. J. 10 1
[14] Kolyadin A N, Kosolapov A F, Pryamikov A D, Biriukov A S, Plotnichenko V G and Dianov E M 2013 Opt. Express 21 9514
[15] Tuchin V V, Fedulova E V, Genina E A, Nazarov M M, Angeluts A A, Meglinski I V, Kitai M S, Sokolov V I and Shkurinov A P 2011 "Studying of dielectric properties of polymers in the terahertz frequency range", Saratov Fall Meeting 2011:Optical Technologies in Biophysics and Medicine XIII, 2012
[16] Anthony J, Leonhardt R, Leon Saval S G and Argyros A 2011 Opt. Express 19 18470
[17] Islam M S, Cordeiro C M B, Franco M A R, Sultana J, Cruz A L S and Abbott D 2020 Opt. Express 28 16089
[18] Ji J, Kong D, Ma T, He X, Chen Q and Wang L 2014 Infrared and Laser Engineering 43 1909
[19] Pryamikov A D, Biriukov A S, Kosolapov A F, Plotnichenko V G and Dianov E M 2011 Opt. Express 19 1441
[20] Huang X, Qi W, Ho D, Yong K T, Luan F and Yoo S 2016 Opt. Express 24 7670
[21] Ventura A, Hayashi J G, Cimek J, Jasion G, Janicek P, Slimen F B, White N, Fu Q, Xu L, Sakr H, Wheeler N V, Richardson D J and Poletti F 2020 Opt. Express 28 16542
[22] Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L and Liu W 2016 Opt. Express 24 22454
[23] Alice C, Cristiano C and Marcos F J F 2018 Fibers 6 43
[24] van Putten L D, Gorecki J, Numkam Fokoua E, Apostolopoulos V and Poletti F 2018 Appl. Opt. 57 3953
[25] Uebel P, Günendi M C, Frosz M H, Ahmed G, Edavalath N N, Ménard J M and Russell P S J 2015 "A broad band robustly single mode hollow core PCF by resonant filtering of higher order modes", Frontiers in Optics 2015, Optical Society of America, San Jose, California 2015, FW6C.2
[26] Yu F, Xu M and Knight J C 2016 Opt Express 24 12969
[27] Edavalath N N, Gunendi M C, Beravat R, Wong G K L, Frosz M H, Menard J M and St J R P 2017 Opt. Lett. 42 2074
[28] Habib M S, Antonio Lopez J E, Markos C, Schulzgen A and Amezcua Correa R 2019 Opt. Express 27 3824
[29] Yan S, Lian Z, Lou S, Wang X, Zhang W and Tang Z 2020 Opt. Quantum Electron 52 269
[30] Sun S, Shi W, Sheng Q, Zhang G, Zhang Y, Yan Z and Yao J 2020 "Investigation of single mode anti resonant hollow-core THz fibers", 2020, Optical Society of America, San Jose, California 2020, 112791Y
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!