High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅)1,†, Chang Liu(刘畅)2, and Wei-Hua Wang(汪卫华)1,‡
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Abstract Strain glass is a frozen short-range strain ordered state found in shape memory alloys recently, which exhibits novel properties around the ideal glass transition temperature T0. However, the T0 of current strain glass systems is still very low, limiting their potential applications and experimental studies. In this paper, we reported two new strain glass systems with relatively high T0. In Ti50Au50-xCrx alloys, the strain glass appears at x=25, and exhibits a T0 of 251 K, while in Ti50Pt50-yFey alloys, the strain glass takes place at y=30, and shows a T0 of 272 K. Both of them are comparable with the highest T0 value reported so far. Moreover, the phase diagrams of main strain glass systems in Ti-based alloys were summarized. It is found that the influence of the martensitic transformation temperature of the host alloy on the T0 of the strain glass is limited. This work may help to design new strain glass systems with higher T0 above ambient temperature.
Fund: Project supported by China Postdoctoral Science Foundation (Grant No. 2019M650880), the National Natural Science Foundation of China (Grant Nos. 51901243, 61888102, and 11790291), the Natural Science Foundation of Guangdong Province, China (Grant No. 2019B030302010), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000).
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华) High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys 2021 Chin. Phys. B 30 018101
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.