Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128101    DOI: 10.1088/1674-1056/abb3f2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate

Zhi-Qiang Hu(胡志强)1, Jian-Li Shao(邵建立)1,†, Yi-Fan Xie(谢轶凡)2, and Yong Mei(梅勇)1,3,
1 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; 2 School of Science, China University of Mining and Technology, Beijing 100083, China; 3 Institute of Defense Engineering, AMS, PLA, Beijing 100036, China
Abstract  Densification is a major feature of silica glass that has received widespread attention. This work investigates the fracture behavior of densified silica glass upon uniaxial tension based on atomistic simulations. It is shown that the tensile strength of the silica glass approximately experiences a parabolic reduction with the initial density, while the densified samples show a faster power growth with the increase of strain rate. Meanwhile, the fracture strain and strain energy increase significantly when the densification exceeds a certain threshold, but fracture strain tends to the same value and strain energy becomes closer for different densified samples at extreme high strain rate. Microscopic views indicate that all the cracks are formed by the aggregation of nanoscale voids. The transition from brittleness fracture to ductility fracture can be found with the increase of strain rate, as a few fracture cracks change into a network distribution of many small cracks. Strikingly, for the high densified sample, there appears an evident plastic flow before fracture, which leads to the crack number less than the normal silica glass at the high strain rate. Furthermore, the coordinated silicon analysis suggests that high strain rate tension will especially lead to the transition from 4-to 3-fold Si when the high densified sample is in plastic flow.
Keywords:  silica glass      densification      fracture      strain rate      atomistic simulation  
Received:  22 June 2020      Revised:  19 July 2020      Accepted manuscript online:  01 September 2020
PACS:  81.05.Kf (Glasses (including metallic glasses))  
  81.70.Bt (Mechanical testing, impact tests, static and dynamic loads)  
  62.20.mm (Fracture)  
  62.20.-x (Mechanical properties of solids)  
Fund: Project supported by Beijing Institute of Technology Research Fund Program for Young Scholars.
Corresponding Authors:  Corresponding author. E-mail: shao_jianli@bit.edu.cn Corresponding author. E-mail: meiyong1990@126.com   

Cite this article: 

Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立), Yi-Fan Xie(谢轶凡), and Yong Mei(梅勇) Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate 2020 Chin. Phys. B 29 128101

[1] Schuh C A, Hufnagel T C and Ramamurty U Acta Mater. 55 4067 DOI: 10.1016/j.actamat.2007.01.0522007
[2] Kumar G, Tang H X and Schroers J Nature 457 868 DOI: 10.1038/nature077182009
[3] Telford M Mater. Today 7 18 DOI: 10.1016/S1369-7021(04)00625-X2004
[4] Inoue A P. Jpn. Acad. B-Phys. 81 156 DOI: 10.2183/pjab.81.1562005
[5] Chen Y C, Lu Z, Nomura K I, Wang W, Kalia R K, Nakano A and Vashishta P Phys. Rev. Lett. 99 155506 DOI: 10.1103/PhysRevLett.99.1555062007
[6] Irwin G1957 J. Appl. Mech. 24 351
[7] Barenblatt G I Adv. Appl. Mech. 7 55 DOI: 10.1016/S0065-2156(08)70121-21962
[8] Guin J P and Wiederhorn S M Phys. Rev. Lett. 92 215502 DOI: 10.1103/PhysRevLett.92.2155022004
[9] Bonamy D, Prades S, Rountree C L, Ponson L, Dalmas D, Bouchaud E, Ravi-Chandar K and Guillot C Int. J. Fract. 140 3 DOI: 10.1007/s10704-006-6579-22006
[10] López-Cepero J M, Wiederhorn S M, Fett T and Guin J P Int. J. Mater. Res. 98 1170 DOI: 10.3139/146.1015832007
[11] Haile J M, Johnston I, Mallinckrodt A J and McKay S Comput. Phys. 7 625 DOI: 10.1063/1.48232341993
[12] Muralidharan K, Simmons J H, Deymier P A and Runge K J. Non-Cryst. Solids 351 1532 DOI: 10.1016/j.jnoncrysol.2005.03.0262005
[13] Muralidharan K, Oh K D, Deymier P A, Runge, K and Simmons J H J. Mater. Sci. 42 4159 DOI: 10.1007/s10853-007-1638-22007
[14] Rimsza J M, Jones R E and Criscenti L J J. Am. Ceram. Soc. 101 1488 DOI: 10.1111/jace.2018.101.issue-42018
[15] Jones R E and Zimmerman J A J. Mech. Phys. Solids 58 1318 DOI: 10.1016/j.jmps.2010.06.0012010
[16] Pedone A, Malavasi G, Menziani M C, Segre U and Cormack A N Chem. Mat. 20 4356 DOI: 10.1021/cm800413v2008
[17] Vollmayr K, Kob W and Binder K Phys. Rev. B 54 15808 DOI: 10.1103/PhysRevB.54.158081996
[18] Ashwin J, Bouchbinder E and Procaccia I Phys. Rev. E 87 042310 DOI: 10.1103/PhysRevE.87.0423102013
[19] Yuan F and Huang L J. Non-Cryst. Solids 358 3481 DOI: 10.1016/j.jnoncrysol.2012.05.0452012
[20] Wang J, Rajendran A M and Dongare A M J. Mater. Sci. 50 8128 DOI: 10.1007/s10853-015-9386-12015
[21] Shi Y, Luo J, Yuan F and Huang L J. Appl. Phys. 115 043528 DOI: 10.1063/1.48629592014
[22] Chowdhury S C, Haque B Z and Gillespie J W J. Mater. Sci. 51 10139 DOI: 10.1007/s10853-016-0242-82016
[23] Swiler T P, Simmons J H, Wright A C J. Non-Cryst. Solids 182 68 DOI: 10.1016/0022-3093(94)00546-X1995
[24] Ebrahem F, Bamer F and Markert B Comput. Mater. Sci. 149 162 DOI: 10.1016/j.commatsci.2018.03.0172018
[25] Zhang F J, Zhou B H, Liu X, Song Y and Zuo X Chin. Phys. B 29 027101 DOI: 10.1088/1674-1056/ab5fc52020
[26] Yuan F and Huang L Sci. Rep. 4 1 DOI: 10.1038/srep050352014
[27] Lacks D J Phys. Rev. Lett. 80 5385 DOI: 10.1103/PhysRevLett.80.53851998
[28] Liang Y, Miranda C R and Scandolo S Phys. Rev. B 75 024205 DOI: 10.1103/PhysRevB.75.0242052007
[29] Hong N V, Vinh L T, Hung P K, Dung M V and Yen N V Eur. Phys. J. B 92 183 DOI: 10.1140/epjb/e2019-100137-72019
[30] Hung P K, Vinh L T, Ha N T, Trang G T T and Hong N V J. Non-Cryst. Solids 530 119780 DOI: 10.1016/j.jnoncrysol.2019.1197802020
[31] Le V V and Nguyen G T J. Non-Cryst. Solids 505 225 DOI: 10.1016/j.jnoncrysol.2018.11.0162019
[32] Le V V and Nguyen G T Comput. Mater. Sci. 159 385 DOI: 10.1016/j.commatsci.2018.12.0452019
[33] Afify N D, Mountjoy G and Haworth R Comput. Mater. Sci. 128 75 DOI: 10.1016/j.commatsci.2016.10.0462017
[34] Cowen B J and El-Genk M S Comput. Mater. Sci. 107 88 DOI: 10.1016/j.commatsci.2015.05.0182015
[35] Barmes F, Soulard L and Mareschal M Phys. Rev. B 73 224108 DOI: 10.1103/PhysRevB.73.2241082006
[36] Plimpton S J. Comput. Phys. 117 1 DOI: 10.1038/srep050351995
[37] Tsai D H J. Chem. Phys. 70 1375 DOI: 10.1063/1.4375771979
[38] Subramaniyan A K and Sun C T Int. J. Solids Struct. 45 4340 DOI: 10.1016/j.ijsolstr.2008.03.0162008
[39] Zhou H F, Zhong C, Cao Q P, Qu S X, Wang X D, Yang, W and Jiang J Z Acta Mater. 68 32 DOI: 10.1016/j.actamat.2014.01.0032014
[40] Sha Z, Wong W H, Pei Q, Branicio P S, Liu Z, Wang T, Guo T and Gao H J. Mech. Phys. Solids 104 84 DOI: 10.1016/j.jmps.2017.04.0052017
[41] Shimizu F, Ogata S and Li J Mater. Trans. 48 2923 DOI: 10.2320/matertrans.mj2007692007
[42] Stukowski A Model. Simul. Mater. Sci. Eng. 18 015012 DOI: 10.1088/0965-0393/18/1/0150122009
[43] Smith WA and Michalske TM1990 US-DOE Contract DEAC04-0DPOO789
[44] Argon A S Acta Metall. 27 47 DOI: 10.1016/0001-6160(79)90055-51979
[45] Johnson W L and Samwer K Phys. Rev. Lett. 95 195501 DOI: 10.1103/PhysRevLett.95.1955012005
[46] Stein G. D.The Physics Teacher 17 503 DOI: 10.1119/1.23403411979
[47] Bjornholm S Contemp. Phys. 31 309 DOI: 10.1080/001075190082137811990
[48] Castleman A W and Jena P Proc. Natl. Acad. Sci. USA 103 10552 DOI: 10.1073/pnas.06017831032006
[49] Polk D E and Tumbull D Acta Metall. 20 493 DOI: 10.1016/0001-6160(72)90004-11972
[1] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[2] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[3] Atomistic simulations on adhesive contact of single crystal Cu and wear behavior of Cu-Zn alloy
You-Jun Ye(叶有俊), Le Qin (秦乐), Jing Li (李京), Lin Liu(刘麟), and Ling-Kang Wu(吴凌康). Chin. Phys. B, 2021, 30(2): 026801.
[4] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[5] Mechanical and microstructural response of densified silica glass under uniaxial compression: Atomistic simulations
Yi-Fan Xie(谢轶凡), Feng Feng(冯锋), Ying-Jun Li(李英骏)†, Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立)‡, and Yong Mei(梅勇)§. Chin. Phys. B, 2020, 29(10): 108101.
[6] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[7] Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters
Yuan-Yuan Wang(王园园), Jian-Hua Ding(丁建华), Wen-Bo Liu(柳文波), Shao-Song Huang(黄绍松), Xiao-Qin Ke(柯小琴), Yun-Zhi Wang(王云志), Chi Zhang(张弛), Ji-Jun Zhao(赵纪军). Chin. Phys. B, 2017, 26(2): 026102.
[8] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[9] Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires
Hongxian Xie(谢红献), Tao Yu(于涛), Wei Fang(方伟), Fuxing Yin(殷福星), Dil Faraz Khan. Chin. Phys. B, 2016, 25(12): 126201.
[10] Indenter size effect on the reversible incipient plasticity of Al (001) surface: Quasicontinuum study
Tang Dan (唐丹), Shao Yu-Fei (邵宇飞), Li Jiu-Hui (李久会), Zhao Xing (赵星), Qi Yang (祁阳). Chin. Phys. B, 2015, 24(8): 086805.
[11] Tensile properties of phase interfaces in Mg–Li alloy:A first principles study
Zhang Cai-Li (张彩丽), Han Pei-De (韩培德), Wang Xiao-Hong (王小宏), Zhang Zhu-Xia (张竹霞), Wang Li-Ping (王丽平), Xu Hui-Xia (许慧侠). Chin. Phys. B, 2013, 22(12): 126802.
[12] Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青). Chin. Phys. B, 2012, 21(9): 093104.
[13] The charging stability of different silica glasses studied by measuring the secondary electron emission yield
Zhao Su-Ling(赵谡玲) and Bertrand Poumellec. Chin. Phys. B, 2011, 20(3): 037901.
[14] A numerical analytic method for electromagnetic radiation accompanying with fracture of rocks
Chen Zhen(陈震), Huang Ka-Ma(黄卡玛). Chin. Phys. B, 2010, 19(10): 105201.
[15] Lanthanum-doped Bi4Ti3O12 ceramics prepared by high-pressure technique
Lin Xue(林雪), Guan Qing-Feng(关庆丰), Liu Yang(刘洋), and Li Hai-Bo(李海波). Chin. Phys. B, 2010, 19(10): 107701.
No Suggested Reading articles found!