INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate |
Zhi-Qiang Hu(胡志强)1, Jian-Li Shao(邵建立)1,†, Yi-Fan Xie(谢轶凡)2, and Yong Mei(梅勇)1,3,‡ |
1 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; 2 School of Science, China University of Mining and Technology, Beijing 100083, China; 3 Institute of Defense Engineering, AMS, PLA, Beijing 100036, China |
|
|
Abstract Densification is a major feature of silica glass that has received widespread attention. This work investigates the fracture behavior of densified silica glass upon uniaxial tension based on atomistic simulations. It is shown that the tensile strength of the silica glass approximately experiences a parabolic reduction with the initial density, while the densified samples show a faster power growth with the increase of strain rate. Meanwhile, the fracture strain and strain energy increase significantly when the densification exceeds a certain threshold, but fracture strain tends to the same value and strain energy becomes closer for different densified samples at extreme high strain rate. Microscopic views indicate that all the cracks are formed by the aggregation of nanoscale voids. The transition from brittleness fracture to ductility fracture can be found with the increase of strain rate, as a few fracture cracks change into a network distribution of many small cracks. Strikingly, for the high densified sample, there appears an evident plastic flow before fracture, which leads to the crack number less than the normal silica glass at the high strain rate. Furthermore, the coordinated silicon analysis suggests that high strain rate tension will especially lead to the transition from 4-to 3-fold Si when the high densified sample is in plastic flow.
|
Received: 22 June 2020
Revised: 19 July 2020
Accepted manuscript online: 01 September 2020
|
PACS:
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
81.70.Bt
|
(Mechanical testing, impact tests, static and dynamic loads)
|
|
62.20.mm
|
(Fracture)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
Fund: Project supported by Beijing Institute of Technology Research Fund Program for Young Scholars. |
Corresponding Authors:
†Corresponding author. E-mail: shao_jianli@bit.edu.cn ‡Corresponding author. E-mail: meiyong1990@126.com
|
Cite this article:
Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立), Yi-Fan Xie(谢轶凡), and Yong Mei(梅勇) Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate 2020 Chin. Phys. B 29 128101
|
[1] Schuh C A, Hufnagel T C and Ramamurty U Acta Mater. 55 4067 DOI: 10.1016/j.actamat.2007.01.0522007 [2] Kumar G, Tang H X and Schroers J Nature 457 868 DOI: 10.1038/nature077182009 [3] Telford M Mater. Today 7 18 DOI: 10.1016/S1369-7021(04)00625-X2004 [4] Inoue A P. Jpn. Acad. B-Phys. 81 156 DOI: 10.2183/pjab.81.1562005 [5] Chen Y C, Lu Z, Nomura K I, Wang W, Kalia R K, Nakano A and Vashishta P Phys. Rev. Lett. 99 155506 DOI: 10.1103/PhysRevLett.99.1555062007 [6] Irwin G1957 J. Appl. Mech. 24 351 [7] Barenblatt G I Adv. Appl. Mech. 7 55 DOI: 10.1016/S0065-2156(08)70121-21962 [8] Guin J P and Wiederhorn S M Phys. Rev. Lett. 92 215502 DOI: 10.1103/PhysRevLett.92.2155022004 [9] Bonamy D, Prades S, Rountree C L, Ponson L, Dalmas D, Bouchaud E, Ravi-Chandar K and Guillot C Int. J. Fract. 140 3 DOI: 10.1007/s10704-006-6579-22006 [10] López-Cepero J M, Wiederhorn S M, Fett T and Guin J P Int. J. Mater. Res. 98 1170 DOI: 10.3139/146.1015832007 [11] Haile J M, Johnston I, Mallinckrodt A J and McKay S Comput. Phys. 7 625 DOI: 10.1063/1.48232341993 [12] Muralidharan K, Simmons J H, Deymier P A and Runge K J. Non-Cryst. Solids 351 1532 DOI: 10.1016/j.jnoncrysol.2005.03.0262005 [13] Muralidharan K, Oh K D, Deymier P A, Runge, K and Simmons J H J. Mater. Sci. 42 4159 DOI: 10.1007/s10853-007-1638-22007 [14] Rimsza J M, Jones R E and Criscenti L J J. Am. Ceram. Soc. 101 1488 DOI: 10.1111/jace.2018.101.issue-42018 [15] Jones R E and Zimmerman J A J. Mech. Phys. Solids 58 1318 DOI: 10.1016/j.jmps.2010.06.0012010 [16] Pedone A, Malavasi G, Menziani M C, Segre U and Cormack A N Chem. Mat. 20 4356 DOI: 10.1021/cm800413v2008 [17] Vollmayr K, Kob W and Binder K Phys. Rev. B 54 15808 DOI: 10.1103/PhysRevB.54.158081996 [18] Ashwin J, Bouchbinder E and Procaccia I Phys. Rev. E 87 042310 DOI: 10.1103/PhysRevE.87.0423102013 [19] Yuan F and Huang L J. Non-Cryst. Solids 358 3481 DOI: 10.1016/j.jnoncrysol.2012.05.0452012 [20] Wang J, Rajendran A M and Dongare A M J. Mater. Sci. 50 8128 DOI: 10.1007/s10853-015-9386-12015 [21] Shi Y, Luo J, Yuan F and Huang L J. Appl. Phys. 115 043528 DOI: 10.1063/1.48629592014 [22] Chowdhury S C, Haque B Z and Gillespie J W J. Mater. Sci. 51 10139 DOI: 10.1007/s10853-016-0242-82016 [23] Swiler T P, Simmons J H, Wright A C J. Non-Cryst. Solids 182 68 DOI: 10.1016/0022-3093(94)00546-X1995 [24] Ebrahem F, Bamer F and Markert B Comput. Mater. Sci. 149 162 DOI: 10.1016/j.commatsci.2018.03.0172018 [25] Zhang F J, Zhou B H, Liu X, Song Y and Zuo X Chin. Phys. B 29 027101 DOI: 10.1088/1674-1056/ab5fc52020 [26] Yuan F and Huang L Sci. Rep. 4 1 DOI: 10.1038/srep050352014 [27] Lacks D J Phys. Rev. Lett. 80 5385 DOI: 10.1103/PhysRevLett.80.53851998 [28] Liang Y, Miranda C R and Scandolo S Phys. Rev. B 75 024205 DOI: 10.1103/PhysRevB.75.0242052007 [29] Hong N V, Vinh L T, Hung P K, Dung M V and Yen N V Eur. Phys. J. B 92 183 DOI: 10.1140/epjb/e2019-100137-72019 [30] Hung P K, Vinh L T, Ha N T, Trang G T T and Hong N V J. Non-Cryst. Solids 530 119780 DOI: 10.1016/j.jnoncrysol.2019.1197802020 [31] Le V V and Nguyen G T J. Non-Cryst. Solids 505 225 DOI: 10.1016/j.jnoncrysol.2018.11.0162019 [32] Le V V and Nguyen G T Comput. Mater. Sci. 159 385 DOI: 10.1016/j.commatsci.2018.12.0452019 [33] Afify N D, Mountjoy G and Haworth R Comput. Mater. Sci. 128 75 DOI: 10.1016/j.commatsci.2016.10.0462017 [34] Cowen B J and El-Genk M S Comput. Mater. Sci. 107 88 DOI: 10.1016/j.commatsci.2015.05.0182015 [35] Barmes F, Soulard L and Mareschal M Phys. Rev. B 73 224108 DOI: 10.1103/PhysRevB.73.2241082006 [36] Plimpton S J. Comput. Phys. 117 1 DOI: 10.1038/srep050351995 [37] Tsai D H J. Chem. Phys. 70 1375 DOI: 10.1063/1.4375771979 [38] Subramaniyan A K and Sun C T Int. J. Solids Struct. 45 4340 DOI: 10.1016/j.ijsolstr.2008.03.0162008 [39] Zhou H F, Zhong C, Cao Q P, Qu S X, Wang X D, Yang, W and Jiang J Z Acta Mater. 68 32 DOI: 10.1016/j.actamat.2014.01.0032014 [40] Sha Z, Wong W H, Pei Q, Branicio P S, Liu Z, Wang T, Guo T and Gao H J. Mech. Phys. Solids 104 84 DOI: 10.1016/j.jmps.2017.04.0052017 [41] Shimizu F, Ogata S and Li J Mater. Trans. 48 2923 DOI: 10.2320/matertrans.mj2007692007 [42] Stukowski A Model. Simul. Mater. Sci. Eng. 18 015012 DOI: 10.1088/0965-0393/18/1/0150122009 [43] Smith WA and Michalske TM1990 US-DOE Contract DEAC04-0DPOO789 [44] Argon A S Acta Metall. 27 47 DOI: 10.1016/0001-6160(79)90055-51979 [45] Johnson W L and Samwer K Phys. Rev. Lett. 95 195501 DOI: 10.1103/PhysRevLett.95.1955012005 [46] Stein G. D.The Physics Teacher 17 503 DOI: 10.1119/1.23403411979 [47] Bjornholm S Contemp. Phys. 31 309 DOI: 10.1080/001075190082137811990 [48] Castleman A W and Jena P Proc. Natl. Acad. Sci. USA 103 10552 DOI: 10.1073/pnas.06017831032006 [49] Polk D E and Tumbull D Acta Metall. 20 493 DOI: 10.1016/0001-6160(72)90004-11972 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|