Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108706    DOI: 10.1088/1674-1056/abad24
Special Issue: SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
SPECIAL TOPIC—Modeling and simulations for the structures and functions of proteins and nucleic acids Prev   Next  

Find slow dynamic modes via analyzing molecular dynamics simulation trajectories

Chuanbiao Zhang(张传彪)1 and Xin Zhou(周昕)2,
1 College of Physics and Electronic Engineering, Heze University, Heze 274015, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

It is a central issue to find the slow dynamic modes of biological macromolecules via analyzing the large-scale data of molecular dynamics simulation (MD). While the MD data are high-dimensional time-successive series involving all-atomic details and sub-picosecond time resolution, a few collective variables which characterizing the motions in longer than nanoseconds are needed to be chosen for an intuitive understanding of the dynamics of the system. The trajectory map (TM) was presented in our previous works to provide an efficient method to find the low-dimensional slow dynamic collective-motion modes from high-dimensional time series. In this paper, we present a more straight understanding about the principle of TM via the slow-mode linear space of the conformational probability distribution functions of MD trajectories and more clearly discuss the relation between the TM and the current other similar methods in finding slow modes.

Keywords:  molecular dynamics simulation      slow modes      trajectory map  
Received:  18 June 2020      Revised:  27 July 2020      Accepted manuscript online:  07 August 2020
PACS:  87.15.A- (Theory, modeling, and computer simulation)  
  02.70.Ns (Molecular dynamics and particle methods)  
  82.20.Wt (Computational modeling; simulation)  
Corresponding Authors:  Corresponding author. E-mail: xzhou@ucas.ac.cn   
About author: 
†Corresponding author. E-mail: xzhou@ucas.ac.cn
* Project supported by the National Natural Science Foundation of China (Grant No. 11904086).

Cite this article: 

Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)† Find slow dynamic modes via analyzing molecular dynamics simulation trajectories 2020 Chin. Phys. B 29 108706

Fig. 1.  

(a) Time evolution of the RMSD of the Trp-cage to its native structure, the slow variables B1 and B2 obtained in the TM. Red line is time-window-smoothed one (Δ t = 200 ns). (b) Eigenvalue of the variance–covariance matrix of the trajectory-mapped points. The inset is the contribution of each basis function to the slow variables B1 and B2. (c) The free-energy landscape (in units of kBT) in the slow-variable space (B1, B2).

Fig. 2.  

Time-ordered similarity matrix of the MD trajectory. The similarity between two samples C(t2, t1) = B(t2) ⋅ B(t1). (b) The time-rearranged similarity matrix, suggesting three metastable states. (c) Kinetic transition network. Numbers near the arrows are the corresponding transition rates. The population of each state in the 208-μs MD trajectory is listed in bracket (which approaches to the equilibrium one, in consistent with the fact the folding and unfolding transitions occur more than ten times during the MD simulation). Residue TRP6 and PRO17 are shown in blue, GLY11 in red.

[1]
Piana S, Lindorff-Larsen K, Shaw D E 2012 Proc. Natl. Acad. Sci. USA 109 17845 DOI: 10.1073/pnas.1201811109
[2]
Lyulin S V, Gurtovenko A A, Larin S V, Nazarychev V M, Lyulin A V 2013 Macromolecules 46 6357 DOI: 10.1021/ma4011632
[3]
Lane T J, Shukla D, Kyle A B, Vijay S P 2013 Curr. Opin. Struct. Biol. 23 58 DOI: 10.1016/j.sbi.2012.11.002
[4]
Jain A K 2008 Machine Learning and Knowledge Discovery Berlin, Heidelberg Springer 3 4 DOI: 10.1007/978-3-540-87479-9_3
[5]
Schubert E, Sander J, Ester M, Kriegel H P, Xu X 2017 ACM Trans. Database Syst. 42 19 DOI: 10.1145/3068335
[6]
Alex R, Laio A 2014 Science 344 1492 https://science.sciencemag.org/content/344/6191/1492
[7]
Hotelling H 1933 J. Educ. Psychol. 24 417 DOI: 10.1037/h0071325
[8]
Hyvrinen A, Oja E 2000 Neural Netw. 13 411 DOI: 10.1016/S0893-6080(00)00026-5
[9]
Schwantes C R, Pande V S 2013 J. Chem. Theory. Comput. 9 2000 DOI: 10.1021/ct300878a
[10]
Tenenbaum J B, de Silva V, Langford J C 2000 Science 290 2319 https://science.sciencemag.org/content/290/5500/2319
[11]
Nadler B, Lafon S, Coifman R R, Kevrekidis I G 2006 Appl. Comput. Harmon. Anal. 21 113 DOI: 10.1016/j.acha.2005.07.004
[12]
Shea J E, Brooks C L 2001 Ann. Rev. Phys. Chem. 52 499 DOI: 10.1146/annurev.physchem.52.1.499
[13]
Mu Y G, Nguyen P H, Stock G 2005 Proteins 58 45 DOI: 10.1002/prot.20310
[14]
Sims G E, Choi I G, Kim S H 2005 Proc. Natl. Acad. Sci. USA 102 618 https://www.pnas.org/content/102/3/618
[15]
Rao F, Karplus M 2010 Proc. Natl. Acad. Sci. USA 107 9152 https://www.pnas.org/content/107/20/9152
[16]
Das P, Moll M, Stamati H, Kavraki L E, Clementi C 2006 Proc. Natl. Acad. Sci. USA 103 9885 https://www.pnas.org/content/103/26/9885
[17]
Nadler B, Lafon S, Coifman R R, Kevrekidis I G 2006 Appl. Comput. Harmon. Anal. 21 113 DOI: 10.1016/j.acha.2005.07.004
[18]
Krivov S V, Karplus M 2004 Proc. Natl. Acad. Sci. USA 101 14766 https://www.pnas.org/content/101/41/14766
[19]
Maisuradze G G, Liwo A, Scheraga H A 2009 Phys. Rev. Lett. 102 238102 DOI: 10.1103/PhysRevLett.102.238102
[20]
Torda A E, Gunsteren W F 1994 J. Comput. Chem. 15 1331 DOI: 10.1002/jcc.540151203
[21]
Shao J Y, Tanner S W, Thompson N, Cheatham T E 2007 J. Chem. Theory. Comput. 3 2312 DOI: 10.1021/ct700119m
[22]
Deuflhard P, Huisinga W, Fischer A, Schutte C 2000 Linear Algebra Appl. 315 39 DOI: 10.1016/S0024-3795(00)00095-1
[23]
Deuflhard P, Weber M 2005 Numer Linear Algebra Appl. 398 161 DOI: 10.1016/j.laa.2004.10.026
[24]
Gfeller D, De Los Rios P, Caflisch A, Rao F 2007 Proc. Natl. Acad. Sci. USA 104 1817 DOI: 10.1073/pnas.0608099104
[25]
Noe F, Horenko I, Schutte C, Smith J C 2007 J. Chem. Phys. 126 155102 DOI: 10.1063/1.2714539
[26]
Chodera J D, Singhal N, Pande V S, Dill K A, Swope W C 2007 J. Chem. Phys. 126 155101 DOI: 10.1063/1.2714538
[27]
Bowman G R, Pande V S 2010 Proc. Natl. Acad. Sci. USA 107 10890 https://www.pnas.org/content/107/24/10890
[28]
Bowman G R, Meng L, Huang X 2013 J. Chem. Phys. 139 121905 DOI: 10.1063/1.4812768
[29]
Weber J K, Jack R L, Pande V S 2013 J. Am. Chem. Soc. 135 5501 DOI: 10.1021/ja4002663
[30]
Pande V S, Beauchamp K, Bowman G R 2010 Methods 52 99 DOI: 10.1016/j.ymeth.2010.06.002
[31]
Deng N J, Dai W, Levy R M 2013 J. Phys. Chem. B 117 12787 DOI: 10.1021/jp401962k
[32]
Naritomi Y, Fuchigami S 2011 J. Chem. Phys. 134 065101 DOI: 10.1063/1.3554380
[33]
Nuske F, Keller B G, Perez-Hernandez G, Mey A S J S, Noe F 2014 J. Chem. Theory. Comput. 10 1739 DOI: 10.1021/ct4009156
[34]
Gong L C, Zhou X 2010 J. Phys. Chem. B 114 10266 DOI: 10.1021/jp100737g
[35]
Gong L C, Zhou X 2009 Phys. Rev. E 80 026707 DOI: 10.1103/PhysRevE.80.026707
[36]
Zhang C B, Li M, Zhou X 2015 Chin. Phys. B 24 120202 DOI: 10.1088/1674-1056/24/12/120202
[37]
Gong L C, Zhou X, Ouyang Z C 2015 PloS One 10 e0125932 DOI: 10.1371/journal.pone.0125932
[38]
Zhang C B, Yu J, Zhou X 2017 J. Phys. Chem. B 121 4678 DOI: 10.1021/acs.jpcb.7b00664
[39]
Zhang C B, Ye F F, Li M, Zhou X 2019 Sci. China: Phys. Mech. 62 067012 DOI: 10.1007/s11433-018-9313-1
[40]
Zhang C B, Xu S, Zhou X 2019 Phys. Rev. E 100 033301 DOI: 10.1103/PhysRevE.100.033301
[41]
Neidigh J W, Fesinmeyer R M, Andersen N H 2002 Nat. Struct. Biol. 9 425 https://www.nature.com/articles/nsb798
[42]
Bipasha B, Lin J C, Williams V D, Kummler P, Neidigh J W, Andersen N H 2008 Protein Eng. Des. Sel. 21 171 DOI: 10.1093/protein/gzm082
[43]
Lindorff-Larsen K, Piana S, Dror R O, Shaw D E 2011 Science 334 517 https://science.sciencemag.org/content/334/6055/517
[44]
Day R, Paschek D, Garcia A E 2010 Proteins 78 1889 DOI: 10.1002/prot.22702
[45]
Spiwok V, Oborsky P, Pazurikova J, Krenek A, Kralova B 2015 J. Chem. Phys. 142 115101 DOI: 10.1063/1.4914828
[46]
Kim S B, Dsilva C J, Kevrekidis I G, Debenedetti P G 2015 J. Chem. Phys. 142 085101 DOI: 10.1063/1.4913322
[47]
Andryushchenko V A, Chekmarev S F 2016 Eur. Biophys. J. 45 229 DOI: 10.1007/s00249-015-1089-7
[48]
Zang T W, Yu L L, Zhang C, Ma J P 2014 J. Chem. Phys. 141 044113 DOI: 10.1063/1.4890038
[49]
Zhan L X, Chen J Z Y, Liu W K 2007 Proteins 66 436 DOI: 10.1002/prot.21157
[50]
Huang X H, Hagen M, Kim B, Friesner R A, Zhou R H, Berne B J 2007 J. Phys. Chem. B 111 5405 DOI: 10.1021/jp068826w
[51]
Pitera J W, Swope W C 2003 Proc. Natl. Acad. Sci. USA 100 7587 DOI: 10.1073/pnas.1330954100
[52]
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C 2006 Proteins 65 712 DOI: 10.1002/prot.21123
[53]
Lai Z Z, Preketes N K, Mukamel S, Wang J 2013 J. Phys. Chem. B 117 4661 DOI: 10.1021/jp309122b
[54]
Abaskharon R M, Culik R M, Woolley G A, Gai F 2015 J. Phys. Chem. Lett. 6 521 DOI: 10.1021/jz502654q
[55]
Andryushchenko V A, Chekmarev S F 2016 Eur. Biophys. J. 45 229 DOI: 10.1007/s00249-015-1089-7
[56]
Piana S, Lindorff-Larsen K, Shaw D E 2011 Biophys. J. 100 L47 DOI: 10.1016/j.bpj.2011.03.051
[57]
Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926 DOI: 10.1063/1.445869
[58]
MacKerell A D, Bashford D, Bellott M et al. 1998 J. Phys. Chem. B 102 3586 DOI: 10.1021/jp973084f
[59]
Altis A, Otten M, Nguyen P H, Hegger R, Stock G 2008 J. Chem. Phys. 128 245102 DOI: 10.1063/1.2945165
[60]
Laio A, Gervasio F L 2008 Rep. Prog. Phys. 71 126601 DOI: 10.1088/0034-4885/71/12/126601
[61]
Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187 https://www.sciencedirect.com/science/article/pii/0021999177901218
[62]
Allen R J, Valeriani C, Wolde P R 2009 J. Phys.: Condens. Matter 21 463102 DOI: 10.1088/0953-8984/21/46/463102/meta
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!