Boron carbide (B4C) is a rhombic structure composed of icosahedra and atomic chains, which has an important application in armored materials. The application of B4C under super high pressure without failure is a hot spot of research. Previous studies have unmasked the essential cause of B4C failure, i.e., its structure will change subjected to impact, especially under the non-hydrostatic pressure and shear stress. However, the change of structure has not been clearly understood nor accurately determined. Here in this paper, we propose several B4C polymorphs including B4C high pressure phases with non-icosahedra, which are denoted as post-B4C and their structures are formed due to icosahedra broken and may be obtained through high pressure and high temperature (HPHT). The research of their physical properties indicates that these B4C polymorphs have outstanding mechanical and electrical properties. For instance, aP10, mC10, mP20, and oP10-B4C are conductive superhard materials. We hope that our research will enrich the cognition of high pressure structural deformation of B4C and broaden the application scope of B4C.
* Project supported by the National Natural Science Foundation of China (Grant Nos. 51871114 and 12064013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BAB214010), the Research Foundation of the Education Department of Jiangxi Province, China (Grant Nos. GJJ180433 and GJJ180477), the Open Funds of the State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, China (Grant No. 201906), the Ganzhou Science and Technology Innovation Project, China (Grant No. 201960), and the Jiangxi University of Science and Technology Scientific Research Starting Foundation, China (Grant No. jxxjbs17053).
Cite this article:
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡ First principles study of post-boron carbide phases with icosahedra broken 2020 Chin. Phys. B 29 103102
Fig. 1.
Structural models for (a) po, (b) cP30, and (c) oP10.
Fig. 2.
Curves of enthalpy (relative to cP30) versus pressure for various B4C polymorphs.
B
G
E
ν
Hv
po
239.44
196.75
463.34
0.177
30.97
aP10
215.39
225.17
500.95
0.112
44.80
mC10
275.33
271.75
613.43
0.129
47.94
mP2
278.80
250.26
577.87
0.155
40.60
oP1
261.14
252.88
573.52
0.134
44.59
tP15
215.21
214.36
482.79
0.126
40.95
hP20
290.18
102.36
274.78
0.342
7.45
cP20
230.97
147.31
364.46
0.237
18.92
cP30
284.03
109.17
290.32
0.330
8.60
Table 1.
B, G, E, ν, and Hv (in units of GPa) for various B4C polymorphs at ambient pressure.
B
G
E
ν
Hv
aP10
704.36
361.12
925.24
0.281
27.84
mC10
728.72
456.61
1133.15
0.241
41.30
mP20
713.44
402.81
1017.02
0.262
33.57
oP10
723.43
399.79
1012.80
0.267
32.59
tP15
720.76
370.91
949.81
0.280
28.50
rH15
736.85
534.69
1291.65
0.208
54.57
Table 2.
Values of B, G, E, ν, and Hv (in units of GPa) for various B4C polymorphs at high pressure of 150 GPa.
Fig. 3.
Calculated band structure for (a) po-B4C: GGA and (b) HSE06, with horizontal red line, cyan line, and green line representing Fermi level, VMB, and CMB, respectively.
Fig. 4.
Calculated band structures for B4C models based on HSE06: (a) aP10, (b) mC10, (c) mP20, (d) oP10, (e) tP15, (f) hP20, (g) cP20, and (h) cP30, with horizontal red line, cyan line, and green line representing Fermi level, VMB, and CMB, respectively.
Fig. 5.
Calculated PDOSs for B4C models based on HSE06: (a) aP10, (b) mC10, (c) mP20, (d) oP10, (e) hP20, and (f) cP30, with red dash line denoting Fermi level.
Fig. 6.
Orbits near Fermi-level of oP10-B4C at ambient pressure, viewing along axis (a) a and (b) c, respectively, with isovalue being 0.02 e/Å3.
Moshtaghioun B M, Cumbrera-Hernández F L, Gómez-García D, Bernardi-Martín S, Domínguez-Rodríguez A, Monshi A, Abbasi M H 2013 J. Eur. Ceram. Soc. 33 361 DOI: 10.1016/j.jeurceramsoc.2012.08.028
[6]
Johnson G R, Holmquist T J 1999 J. Appl. Phys. 85 8060 DOI: 10.1063/1.370643
Orphal D L, Franzen R R, Charters A C, Menna T L, Piekutowski A J 1997 Int. J. Impact Eng. 19 15 DOI: 10.1016/S0734-743X(96)00004-8
[11]
Awasthi A P, Subhash G 2019 J. Appl. Phys. 125 215901 DOI: 10.1063/1.5091795
[12]
Yang X K, Coleman S P, Lasalvia J C, Goddard W A, An Q 2018 ACS Appl. Mater. Inter. 10 5072 DOI: 10.1021/acsami.7b16782
[13]
Vogler T, Reinhart W, Chhabildas L 2004 J. Appl. Phys. 95 4173 DOI: 10.1063/1.1686902
[14]
Zhang Y, Mashimo T, Uemura Y, Uchino M, Kodama M, Shibata K, Fukuoka K, Kikuchi M, Kobayashi T, Sekine T 2006 J. Appl. Phys. 100 113536 DOI: 10.1063/1.2399334
Mashimo T, Uchino M 1997 J. Appl. Phys. 81 7064 DOI: 10.1063/1.365229
[17]
Zhao S T, Kad B, Remington B A, LaSalvia J C, Wehrenberg C E, Behler K D, Meyers M A 2016 Proc. Natl. Acad. Sci. USA 113 12088 DOI: 10.1073/pnas.1604613113
Guo J J, Zhang L, Fujita T, Goto T, Chen M W 2010 Phys. Rev. B 81 060102 DOI: 10.1103/PhysRevB.81.060102
[20]
Dera P, Manghnani M H, Hushur A, Hu Y, Tkachev S 2014 J. Solid State Chem. 215 85 DOI: 10.1016/j.jssc.2014.03.018
[21]
Kumar R S, Dandekar D, Leithe-Jasper A, Tanaka T, Xiao Y, Chow P, Nicol M F, Cornelius A L 2010 Diam. Relat. Mater. 19 530 DOI: 10.1016/j.diamond.2010.01.009
[22]
Yan X Q, Tang Z, Zhang L, Guo J J, Jin C Q, Zhang Y, Goto T, McCauley J, Chen M W 2009 Phys. Rev. Lett. 102 075505 DOI: 10.1103/PhysRevLett.102.075505
[23]
Domnich V, Gogotsi Y, Trenary M, Tanaka T 2002 Appl. Phys. Lett. 81 3783 DOI: 10.1063/1.1521580
Yan X Q, Li W J, Goto T, Chen M W 2006 Appl. Phys. Lett. 88 131905 DOI: 10.1063/1.2189826
[26]
Ghosh D, Subhash G, Lee C H, Yap Y K 2007 Appl. Phys. Lett. 91 061910 DOI: 10.1063/1.2768316
[27]
Lazzari R, Vast N, Besson J, Baroni S, Dal Corso A 1999 Phys. Rev. Lett. 83 3230 DOI: 10.1103/PhysRevLett.83.3230
[28]
Reddy K M, Liu P, Hirata A, Fujita T, Chen M W 2013 Nat. Commun. 4 2483 DOI: 10.1038/ncomms3483
[29]
Xie K Y, An Q, Sato T, Breen A J, Ringer S P, Goddard W A, Cairney J M, Hemker K J 2016 Proc. Natl. Acad. Sci. USA 113 12012 DOI: 10.1073/pnas.1607980113
Zhao Z S, Tian F, Dong X, Li Q, Wang Q Q, Wang H, Zhong X, Xu B, Yu D L, He J L, Wang H T, Ma Y M, Tian Y J 2012 J. Am. Chem. Soc. 134 12362 DOI: 10.1021/ja304380p
[39]
Zhang S S, He J L, Zhao Z S, Yu D L, Tian Y J 2019 Chin. Phys. B 28 106104 DOI: 10.1088/1674-1056/ab4179
[40]
Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567
[41]
Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406 DOI: 10.1103/PhysRevLett.100.136406
[42]
Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106 DOI: 10.1063/1.2404663
[43]
Adenwalla S, Welsch P, Harken A, Brand J, Sezer A, Robertson B W 2001 Appl. Phys. Lett. 79 4357 DOI: 10.1063/1.1426257
[44]
Vast N, Lazzari R, Besson J, Baroni S, Dal Corso A 2000 Comput. Mater. Sci. 17 127 DOI: 10.1016/S0927-0256(00)00009-4
Solozhenko V L, Kurakevych O O, Andrault D, Le Godec Y, Mezouar M 2009 Phys. Rev. Lett. 102 015506 DOI: 10.1103/PhysRevLett.102.015506
[52]
Mannix A J, Zhou X-F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R 2015 Science 350 1513 DOI: 10.1126/science.aad1080
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.