Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084301    DOI: 10.1088/1674-1056/ab9285
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Inversion method of bubble size distribution based on acoustic nonlinear coefficient measurement

Jie Shi(时洁)1,2,3, Yulin Liu(刘宇林)3, Shengguo Shi(时胜国)1,2,3, Anding Deng(邓安定)3, Hongdao Li(李洪道)3
1 Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2 Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China;
3 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
Abstract  Measurements of bubble size distribution require the understanding of the acoustic characteristics of the medium. The bubbles show highly nonlinear properties under finite amplitude acoustic excitation, so the acoustic fields from bubble population are easily observed at the second harmonics as well as at the fundamental frequency, which shows that the nonlinear coefficient increases obviously. The inversion method of bubble size distribution based on nonlinear acoustic effects can peel off the influence of complex environment and obtain the size distribution coefficient information of bubbles more accurately. The previous nonlinear inversion methods of bubble size distribution are mostly based on the nonlinear scattering cross-section characteristics of bubbles. However, the stability of inversion is not high enough. In this paper, we introduce a new acoustic inversion method for bubble size distribution, which is based on the nonlinear coefficients of bubble medium. Compared with other inversion methods based on linear or nonlinear scattering cross section, the inversion method based on nonlinear coefficients of bubble medium proposed in this paper shows good robustness in both simulation and experiment.
Keywords:  bubble size distribution      nonlinear coefficient      acoustic inversion  
Received:  11 January 2020      Revised:  09 May 2020      Accepted manuscript online: 
PACS:  43.25.Rq (Solitons, chaos)  
  43.25.Ts (Nonlinear acoustical and dynamical systems)  
  43.25.Yw (Nonlinear acoustics of bubbly liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674074 and 61701133).
Corresponding Authors:  Jie Shi     E-mail:  shijie@hrbeu.edu.cn

Cite this article: 

Jie Shi(时洁), Yulin Liu(刘宇林), Shengguo Shi(时胜国), Anding Deng(邓安定), Hongdao Li(李洪道) Inversion method of bubble size distribution based on acoustic nonlinear coefficient measurement 2020 Chin. Phys. B 29 084301

[1] Medwin H and Clay C S 1998 Fundamentals of acoustical oceanography (Boston:Acadamic Press Edition) pp. 250-264
[2] Kobelev and Yu A 1989 J. Acoust. Soc. Am. 85 621
[3] Kracht W and Moraga C 2016 Miner. Eng. 32 37
[4] Foldy and Leslie L 1961 Phys. Rev. 122 275
[5] Leighton T G 2004 Proc. Inst. Acoust. 26 357
[6] D'Agostino P, Kerkhof F D, Shahabpour, Moermans J P, Stockmans F and Vereecke E E 2014 J. Hand Surg. 39 1098
[7] Kracht W and Finch J A 2010 Int. J. Miner. Process. 94 115
[8] Zhu Z M and Du G H 1995 Acta Aucstica 6 425(in Chinese)
[9] Wijngaarden L 1968 Fluid Mech. 33 465
[10] Chen W Z, Liu Y N, Huang W and Gao X X 2006 Sci. Chin. (G:Physics Mechanics & Astronomy) 4 385
[11] Cai C L, Yu J, Tu J, Guo X S, Huang P T and Zhang D 2018 Chin. Phys. B 27 084302
[12] Teng X D, Guo X S, Tu J and Zhang D 2016 Chin. Phys. B 25 124308
[13] Zhang Y N, Du X, Xian H and Wu Y 2015 Ultrason. Sonochem 23 16
[14] Zhang Y N and Li S C 2015 Ultrason. Sonochem. 26 437
[15] Zhang Y N and Li S C 2017 Ultrason. Sonochem. 35 431
[16] Zhang Y N 2013 J. Fluids Eng. 135 9
[17] Zhang Y N 2012 Commun. Heat. Mass. Transf. 39 1496
[18] Shi J, Yang D S, Zhang H Y, Shi S G, Li S and Hu B 2017 Chin. Phys. B 26 074301
[19] Shi J, Yang D S, Shi S G, Hu B, Zhang H Y and Hu S Y 2016 Chin. Phys. B 25 024304
[20] Hadamard J 1999 Non-Euclidean Geometry in the Theory of Automorphic Functions (Versailles:American Mathematical Society) pp. 27-40
[21] Akulichev V A and Bulanov V A 2011 J. Acoust. Soc. Am. 130 3438
[22] Akulichev V A and Bulanov V A 1974 Sov. J. Exp. & Theor. Phys. 38 329
[23] Cheng J C, Zhang S Y and Lu Y S 1990 J. Appl. Phys. 68 3865
[24] Shi J, Yang D S and Zhang H Y (P R China Patent) CN 106841382A[2017-06-13] CN 106841382A[2017-06-13]
[25] Wang Y F 2007 The Calculation Method of Inversion Problem and its Application (Beijing:Higher Education Press) p. 266
[26] Ostrovsky D, Sanger J W and Lash J W 1984 Journal of Embryology and Experimental Morphology 78 23
[1] Theoretical framework for geoacoustic inversion by adjoint method
Yang Wang(汪洋), Xiao-Feng Zhao(赵小峰). Chin. Phys. B, 2019, 28(10): 104301.
[2] Design on a highly birefringent and nonlinear photonic crystal fiber in the C waveband
Li Duan-Ming (李端明), Zhou Gui-Yao (周桂耀), Xia Chang-Ming (夏长明), Wang Chao (王超), Yuan Jin-Hui (苑金辉). Chin. Phys. B, 2014, 23(4): 044209.
No Suggested Reading articles found!