Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117201    DOI: 10.1088/1674-1056/abbbdb
RAPID COMMUNICATION Prev   Next  

Collective modes of Weyl fermions with repulsive S-wave interaction

Xun-Gao Wang(王勋高)1,2, Huan-Yu Wang(王寰宇)1,2, Jiang-Min Zhang(张江敏)3,4, and Wu-Ming Liu(刘伍明)1,2,5, †
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3 Fujian Provincial Key Laboratory of Quantum Manipulation New Energy Materials College of Physics and Energy, Fujian Normal University, Fuzhou 350007, China
4 Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen 361005, China
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  

We calculate the spin and density susceptibility of Weyl fermions with repulsive S-wave interaction in ultracold gases. Weyl fermions have a linear dispersion, which is qualitatively different from the parabolic dispersion of conventional materials. We find that there are different collective modes for the different strengths of repulsive interaction by solving the poles equations of the susceptibility in the random-phase approximation. In the long-wavelength limit, the sound velocity and the energy gaps vary with the different strengths of the interaction in the zero sound mode and the gapped modes, respectively. The particle–hole continuum is obtained as well, where the imaginary part of the susceptibility is nonzero.

Keywords:  ultracold gases      collective modes      random-phase approximation  
Received:  27 August 2020      Revised:  11 September 2020      Accepted manuscript online:  28 September 2020
Fund: the National Natural Science Foundation of China (Grant No. 2016YFA0301500).
Corresponding Authors:  Corresponding author. E-mail: wliu@iphy.ac.cn   

Cite this article: 

Xun-Gao Wang(王勋高), Huan-Yu Wang(王寰宇), Jiang-Min Zhang(张江敏), and Wu-Ming Liu(刘伍明) Collective modes of Weyl fermions with repulsive S-wave interaction 2020 Chin. Phys. B 29 117201

Fig. 1.  

Particle–hole continuum (Landau damping regime) in Weyl fermions. The purple region and the yellow region represent intersubband particle–hole excitations (PHEinter) and intrasubband particle–hole excitations (PHEintra), respectively.

Fig. 2.  

A sketch of the interaction strength dependence of the sound velocity in the long-wave length limit for the zero sound mode. Here we use the cut-off momentum $\bar{\varLambda }=10$.

Fig. 3.  

A sketch of the interaction strength dependence of the gap in the long-wave length limit for the gapped modes. There are two branches of gapped modes when $g\alpha {\bar{\varLambda }}^{2}\lt 0.7575$, which corresponds to the dimensionless interaction strength g < 0.299, but there is only one branch of gapped mode when $0.7575\lt g\alpha {\bar{\varLambda }}^{2}\lt 1.515$, Here we use $\bar{\varLambda }=10$.

Fig. 4.  

Dispersion of the collective modes for the zero sound mode. The dispersion is close to the boundary of the intrasubband particle–hole excitations continuum region from above. Here we use g = 10, $\bar{\varLambda }=10$.

Fig. 5.  

Dispersion of the collective modes for the one branch of gapped mode. Here we use g = 0.46, $\bar{\varLambda }=10$.

Fig. 6.  

Dispersion of the collective modes for the one branch of mode. The other branch of gapped mode is very close to the boundary of the intersubband particle–hole excitations continuum region. Here we use g = 0.218, $\bar{\varLambda }=10$.

[1]
Yang B J, Nagaosa N 2014 Nat. Commun. 5 4898 DOI: 10.1038/ncomms5898
[2]
Potter A C, Kimchi I, Vishwanath A 2014 Nat. Commun. 5 5161 DOI: 10.1038/ncomms6161
[3]
Rosenstein B, Shapiro B Y, Li D P, Shapiro I 2015 J. Phys.: Condens. Matter 27 025701 DOI: 10.1088/0953-8984/27/2/025701
[4]
Kung H H, Maiti S, Wang X, Cheong S W, Maslov D L, Blumberg G 2017 Phys. Rev. Lett. 119 136802 DOI: 10.1103/PhysRevLett.119.136802
[5]
Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.3045
[6]
Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101 DOI: 10.1103/PhysRevB.83.205101
[7]
Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029 DOI: 10.1103/PhysRevX.5.011029
[8]
Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013 DOI: 10.1103/PhysRevX.5.031013
[9]
Xu S Y, Belopolski I, Alidoust N et al. 2015 Science 349 613 DOI: 10.1126/science.aaa9297
[10]
Lu L, Wang Z Y, Ye D X, Ran L X, Fu L, Joannopoulos J D, Soljacic M 2015 Science 349 622 DOI: 10.1126/science.aaa9273
[11]
Dubcek T, Kennedy C, Lu L, Ketterle W, Soljacic M, Buljan H 2015 Phys. Rev. Lett. 114 225301 DOI: 10.1103/PhysRevLett.114.225301
[12]
He W Y, Zhang S Z, Law K T 2016 Phys. Rev. A 94 013606 DOI: 10.1103/PhysRevA.94.013606
[13]
Raghu S, Chung S B, Qi X L, Zhang S C 2010 Phys. Rev. Lett. 104 116401 DOI: 10.1103/PhysRevLett.104.116401
[14]
Sachdeva R, Thakur A, Vignale G, Agarwal 2015 Phys. Rev. B 91 205426 DOI: 10.1103/PhysRevB.91.205426
[15]
Srivatsa N S, Ganesh R 2018 Phys. Rev. B 98 165133 DOI: 10.1103/PhysRevB.98.165133
[16]
Gorbar E V, Miransky V A, Shovkovy I A, Sukhachov P O 2019 Phys. Rev. B 99 155120 DOI: 10.1103/PhysRevB.99.155120
[17]
Lv M, Zhang S C 2013 Int. J. Mod. Phys. B 25 1350177 DOI: 10.1142/S0217979213501774
[18]
Kohler T, Goral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311 DOI: 10.1103/RevModPhys.78.1311
[19]
Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225 DOI: 10.1103/RevModPhys.82.1225
[20]
Zhang S S, Yu X L, Ye J W, Liu W M 2013 Phys. Rev. A 87 063623 DOI: 10.1103/PhysRevA.87.063623
[21]
Ryan J C 1991 Phys. Rev. B 43 4499 DOI: 10.1103/PhysRevB.43.4499
[22]
Maiti S, Zyuzin V, Maslov D L 2015 Phys. Rev. B 91 035106 DOI: 10.1103/PhysRevB.91.035106
[23]
Kumar A, Maslov D L 2017 Phys. Rev. B 95 165140 DOI: 10.1103/PhysRevB.95.165140
[24]
Mir M, Abedinpour S H 2017 Phys. Rev. B 96 245110 DOI: 10.1103/PhysRevB.96.245110
[25]
Principi A, Polini M, Vignale G 2009 Phys. Rev. B 80 075418 DOI: 10.1103/PhysRevB.80.075418
[1] Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K
Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖). Chin. Phys. B, 2023, 32(2): 023701.
[2] Collective modes of type-II Weyl fermions with repulsive S-wave interaction
Xun-Gao Wang(王勋高), Yuan Sun(孙远), Liang Liu(刘亮), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(2): 026701.
[3] Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(10): 103401.
[4] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[5] Landau damping of collective modes in a harmonically trapped Bose--Einstein condensate
Ma Xiao-Dong(马晓栋), Zhou Yu(周昱), Ma Yong-Li(马永利), and Huang Guo-Xiang(黄国翔). Chin. Phys. B, 2006, 15(8): 1871-1878.
[6] Application of the second-order ground-state correlation and random-phase approximation on photoionization cross section of manganese
Lu Peng-Fei (芦鹏飞), Liu Jin-Chao (刘锦超), Yang Xiang-Dong (杨向东), Ma Xiao-Guang (马晓光). Chin. Phys. B, 2003, 12(2): 159-163.
No Suggested Reading articles found!