Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116601    DOI: 10.1088/1674-1056/aba2dd
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Sintering reaction and microstructure of MAl (M = Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation

Yuwen Zhang(张宇文)1, Yonghe Deng(邓永和)2, †, Qingfeng Zeng(曾庆丰)3, Dadong Wen(文大东)2, Heping Zhao(赵鹤平)1, Ming Gao(高明)1, Xiongying Dai(戴雄英)2, and Anru Wu(吴安如)4$
1 College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China
2 School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 411104, China
3 School of Physics, Guizhou University, Guiyang 550025, China
4 Hunan Provincial Key Laboratory of Vehicle Power and Transmission Systems, Hunan Institute of Engineering, Xiangtan 411104, China
Abstract  

The sintering–alloying processes of nickel (Ni), iron (Fe), and magnesium (Mg) with aluminum (Al) nanoparticles were studied by molecular dynamics simulation with the analytic embedded-atom model (AEAM) potential. Potential energy, mean heterogeneous coordination number ${N}_{{\rm{A}}}^{{\rm{B}}}$, and surface atomic number Nsurf–A were used to monitor the sintering–reaction processes. The effects of surface segregation, heat of formation, and melting point on the sintering–alloying processes were discussed. Results revealed that sintering proceeded in two stages. First, atoms with low surface energy diffused onto the surface of atoms with high surface energy; second, metal atoms diffused with one another with increased system temperature to a threshold value. Under the same initial conditions, the sintering reaction rate of the three systems increased in the order MgAl < FeAl < NiAl. Depending on the initial reaction temperature, the final core–shell (FeAl and MgAl) and alloyed (NiAl and FeAl) nanoconfigurations can be observed.

Keywords:  molecular dynamics      AEAM potential      core-shell structure      sintering      nanoparticles  
Received:  08 May 2020      Revised:  01 July 2020      Accepted manuscript online:  06 July 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11572124 and 51871096) and the Natural Science Foundation of Hunan Province of China (Grant Nos. 2018JJ4044 and 2018JJ3100).
Corresponding Authors:  Corresponding author. E-mail: dengyonghe1@163.com   

Cite this article: 

Yuwen Zhang(张宇文), Yonghe Deng(邓永和), Qingfeng Zeng(曾庆丰), Dadong Wen(文大东), Heping Zhao(赵鹤平), Ming Gao(高明), Xiongying Dai(戴雄英), and Anru Wu(吴安如)$ Sintering reaction and microstructure of MAl (M = Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation 2020 Chin. Phys. B 29 116601

Fig. 1.  

Initial configuration of different particles. (a) M147Al147 nanoparticles; (b) M309Al309 nanoparticles; (c) M561Al561 nanoparticles. M (M = Mg, Ni, and Fe) and Al atoms are shown as orange and gray spheres, respectively.

Material Structure ΔH/(eV/atom)
Present The first principles calculations
MgAl B2 –0.024 0.051[23]
MgAl3 L12 –0.031 –0.015[23]
Mg3Al L12 –0.007 –0.005[23]
NiAl B2 –0.66 –0.67[31]
NiAl3 L12 –0.27
Ni3Al L12 –0.52 –0.44[31]
FeAl B2 –0.27 –0.28[23]
FeAl3 L12 –0.045 –0.11[23]
Fe3Al L12 –0.17 –0.19[23]
Table 1.  

The heats of formation (ΔH) for M3Al, MAl, and MAl3 (M = Ni, Fe, and Mg).

Material Structure Esurf/(mJ/m2) ratom/nm
Surface Present FP EMP
Ni FCC (111) 1749 2011 0.1243
(110) 1935 2368
(100) 1793 2426
Fe BCC (111) 1510 2733 0.1124
(110) 1230 2430
(100) 1356 2222
Mg HCP (0001) 301 792 0.1590
Al FCC (111) 713 939 0.1426
(100) 747 1081
(110) 809 1090
Table 2.  

The surface energy (Esurf) and atomic radius (ratom) for Ni, Fe, Mg, and Al with different structures and surfaces, the first principle (FP) calculations[38] as well as available theory value[7] (EMP) are also listed.

Fig. 2.  

The evolution of the potential energy (PE) per atom with temperature for pure Ni (a), Mg (b), Fe (c), and Al (d) nanoparticles with ICO configuration.

Material Melting point/K
N = 147 N = 309 N = 561
Ni 950 1100 1180
Fe 1090 1190 1290
Al 570 660 710
Mg 540 600 650
Table 3.  

Melting point for single Ni, Fe, Mg, and Al nanoparticle with sizes (N = 147, 309, and 561).

Fig. 3.  

The temperature evolution of the Fe309Al309, Mg309Al309, and Ni561Al561 nanoparticles with relation time at different initial temperatures.

Fig. 4.  

Heats of formation for resulting MAl (M = Ni, Fe, and Mg) nanoparticles with the size of the atom.

Fig. 5.  

Final configurations of M309Al309 (M = Fe and Mg) nanoparticles after sintering for three different initial temperatures. (a) Fe309Al309; (b) Mg309Al309. The orange and gray balls represent M (M = Fe and Mg) and Al atoms, respectively.

Fig. 6.  

The evolution of Ni561Al561 nanoparticle at Tinit = 100 K. (a) Collision point; (b) diffusion stage; (c) final configuration. The orange and gray balls represent Ni and Al atoms, respectively.

Fig. 7.  

Time evolution with the surface atomic number Nsurf in MAl (M = Fe and Mg) nanoparticles for the various initial temperatures. (a) Fe309Al309, (b)Mg309Al309, (c) Ni561Al561.

Fig. 8.  

The evolution trend of ${N}_{{\rm{A}}}^{{\rm{B}}}$ of MAl (M = Ni, Fe, and Mg) nanoparticles with time for different initial temperatures during the sintering. (a) Fe309Al309; (b) Mg309Al309; (c) Ni561Al561.

[1]
Antunez-Garcia J, Mejia-Rosales S, Perez-Tijerina E, Montejano-Carrizales J M, Jose-Yacaman M 2011 Materials (Basel) 4 368 DOI: 10.3390/ma4020368
[2]
Songül Taran A K G, Arslan Haydar 2020 Chin. Phys. B 29 077801 DOI: 10.1088/1674-1056/ab99b4
[3]
Dassie S A, Leiva E P 2005 J. Chem. Phys. 123 184505 DOI: 10.1063/1.2104487
[4]
Riccardo F, Julius J, Johnston R L 2008 Chem. Rev. 108 845 DOI: 10.1021/cr040090g
[5]
Li G, Wang Q, Liu T, Wang K, He J 2010 J. Cluster Sci. 21 45 DOI: 10.1007/s10876-010-0281-2
[6]
Jian H H, Bao D L, Zhang Y Y, Du S X 2020 Chin. Phys. B 29 048701 DOI: 10.1088/1674-1056/ab7da9
[7]
Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Surf. Sci. 606 971 DOI: 10.1016/j.susc.2012.02.017
[8]
Yang L Y, Gan X L, Xu C, Lang L, Jian Z Y, Xiao S F, Deng H Q, Li X F, Tian Z A, Hu W Y 2019 Comput. Mater. Sci. 156 47 DOI: 10.1016/j.commatsci.2018.09.032
[9]
Li M, Hou Q, Wang J 2017 Nucl. Instrum. Methods Phys. Res. B 410 171 DOI: 10.1016/j.nimb.2017.08.031
[10]
Arcidiacono S, Bieri N R, Poulikakos D, Grigoropoulos C P 2004 Int. J. Multiph. Flow 30 979 DOI: 10.1016/j.ijmultiphaseflow.2004.03.006
[11]
Moitra A, Kim S, Kim S-G, Park S J, German R M, Horstemeyer M F 2010 Acta Mater. 58 3939 DOI: 10.1016/j.actamat.2010.03.033
[12]
Ma B, Zeng H, Cheng X, Zhang C, Lu Z 2019 Comput. Mater. Sci. 163 167 DOI: 10.1016/j.commatsci.2019.03.031
[13]
Ding F, Rosén A, Bolton K 2004 Phys. Rev. B 70 075416 DOI: 10.1103/PhysRevB.70.075416
[14]
Liu C M, Xu C, Cheng Y, Chen X R, Cai L C 2013 Phys. Chem. Chem. Phys. 15 14069 DOI: 10.1039/c3cp51203g
[15]
Guevara-Chapa E, Mejía-Rosales S 2014 J. Nanopart. Res. 16 2757 DOI: 10.1007/s11051-014-2757-8
[16]
Henz B J, Hawa T, Zachariah M 2009 Mol. Simul 35 804 DOI: 10.1080/08927020902818021
[17]
Zheng Q Y, Li Y, Wu W J, Shi M M, Yang B B, Zou J 2019 Chin. Phys. B 28 108102 DOI: 10.1088/1674-1056/ab3f97
[18]
Kim H Y, Lee S H, Kim H G, Ryu J H, Lee H M 2007 Mater. Trans. 48 455 DOI: 10.2320/matertrans.48.455
[19]
Grammatikopoulos P, Cassidy C, Singh V, Sowwan M 2014 Sci. Rep. 4 5779 DOI: 10.1038/srep05779
[20]
Tang J, Yang J 2013 Thin Solid Films 536 318 DOI: 10.1016/j.tsf.2013.03.055
[21]
Pithawalla Y B, El-Shall M S, Deevi S C 2001 J. Phys. Chem. B 105 2085 DOI: 10.1021/jp002354i
[22]
Narasimhan S, Davenport J W 1995 Phys. Rev. B 51 659 DOI: 10.1103/PhysRevB.51.659
[23]
Jelinek B, Groh S, Horstemeyer M F, Houze J, Kim S G, Wagner G J, Moitra A, Baskes M I 2012 Phys. Rev. B 85 245102 DOI: 10.1103/PhysRevB.85.245102
[24]
Martin T P 1996 Phys. Rep. 273 199 DOI: 10.1016/0370-1573(95)00083-6
[25]
Schebarchov D, Hendy S C 2005 Phys. Rev. Lett. 95 116101 DOI: 10.1103/PhysRevLett.95.116101
[26]
Tang J F, Yang J Y 2013 J. Nanopart. Res. 15 2050 DOI: 10.1007/s11051-013-2050-2
[27]
Yang J Y, Hu W Y, Tang J F 2013 RSC Adv. 4 2155 DOI: 10.1039/C3RA43655A
[28]
Yang J Y, Hu W Y, Tang J F, Dai X Y 2013 Comput. Mater. Sci. 74 160 DOI: 10.1016/j.commatsci.2013.03.022
[29]
Dai X Y, Hu W Y, Yang J Y, Yi G J 2017 Thin Solid Films 626 178 DOI: 10.1016/j.tsf.2017.02.041
[30]
Dai X Y, Hu W Y, Yang J Y, Chen C P 2015 Physica B: Condens. Matter 458 144 DOI: 10.1016/j.physb.2014.11.087
[31]
Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665 DOI: 10.1016/j.actamat.2004.02.014
[32]
Haftel M 1993 Phys. Rev. B 48 2611 DOI: 10.1103/PhysRevB.48.2611
[33]
Los J, Mottet C, Tréglia G 2013 Phys. Rev. B 88 165408 DOI: 10.1103/PhysRevB.88.165408
[34]
Yun K Y, Cho Y H, Cha P R, Lee J, Oh J, Choi J H, Lee S C, Nam H S 2012 Acta Mater. 60 4908 DOI: 10.1016/j.actamat.2012.05.032
[35]
Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520 DOI: 10.1063/1.4757945
[36]
Deng L, Hu W Y, Deng H Q, Xiao S F 2010 J. Phys. Chem. C 114 11026 DOI: 10.1021/jp100194p
[37]
Deng L, Hu W Y, Deng H Q, Xiao S F, Tang J F 2011 J. Phys. Chem. C 115 11355 DOI: 10.1021/jp200642d
[38]
Vitos L, Ruban A, Skriver H L, Kollár J 1998 Surf. Sci. 411 186 DOI: 10.1016/S0039-6028(98)00363-X
[39]
Abbaspour M, Akbarzadeh H, Lotfi S 2018 J. Alloys Compd. 764 323 DOI: 10.1016/j.jallcom.2018.05.345
[40]
Yang J Y, Hu W Y, Tang J F 2011 Sci. China- Phys. Mech. Astron. 54 846 DOI: 10.1007/s11433-011-4304-2
[41]
Huang R, Wen Y H, Zhu Z Z, Sun S G 2012 J. Phys. Chem. C 116 11837 DOI: 10.1021/jp303877u
[42]
Yang J Y, Hu W Y, Tang J F 2015 Thin Solid Films 593 137 DOI: 10.1016/j.tsf.2015.09.038
[43]
Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501 DOI: 10.1103/PhysRevLett.95.035501
[44]
Feng D, Feng Y, Yuan S, Zhang X, Wang G 2017 Appl. Therm. Eng. 111 1457 DOI: 10.1016/j.applthermaleng.2016.05.087
[45]
Hamid I, Fang M, Duan H 2015 AIP Adv. 5 047129 DOI: 10.1063/1.4918770
[46]
Purja Pun G P, Mishin Y 2009 Philos. Mag. 89 3245 DOI: 10.1080/14786430903258184
[47]
Müller M, Erhart P, Albe K 2007 J. Phys.: Condens. Matter 19 326220 DOI: 10.1088/0953-8984/19/32/326220
[48]
Perdew J P, Wang Y, Engel E 1991 Phys. Rev. Lett. 66 508 DOI: 10.1103/PhysRevLett.66.508
[49]
Haftel M I, Andreadis T D, Lill J V, Eridon J M 1990 Phys. Rev. B 42 11540 DOI: 10.1103/PhysRevB.42.11540
[50]
Fu C, Ye Y, Yoo M, Ho K 1993 Phys. Rev. B 48 6712 DOI: 10.1103/PhysRevB.48.6712
[51]
Lee E, Lee B J 2010 J. Phys.: Condens. Matter 22 175702 DOI: 10.1088/0953-8984/22/17/175702
[52]
Hendy S, Brown S A, Hyslop M 2003 Phys. Rev. B 68 241403 DOI: 10.1103/PhysRevB.68.241403
[53]
Raut J S, Bhagat R B, Fichthorn K A 1998 Nanostruct. Mater. 10 837 DOI: 10.1016/S0965-9773(98)00120-2
[54]
Yang J Y, Hu W Y, Wu Y Q, Dai X Y 2012 Cryst. Growth Des. 12 2978 DOI: 10.1021/cg300195z
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[9] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[10] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[11] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[12] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[13] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[14] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[15] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
No Suggested Reading articles found!