Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080502    DOI: 10.1088/1674-1056/ab9699
GENERAL Prev   Next  

A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures

Sen-Yue Lou(楼森岳)
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  

The celebrated (1+1)-dimensional Korteweg de-Vries (KdV) equation and its (2+1)-dimensional extension, the Kadomtsev-Petviashvili (KP) equation, are two of the most important models in physical science. The KP hierarchy is explicitly written out by means of the linearized operator of the KP equation. A novel (2+1)-dimensional KdV extension, the cKP3-4 equation, is obtained by combining the third member (KP3, the usual KP equation) and the fourth member (KP4) of the KP hierarchy. The integrability of the cKP3-4 equation is guaranteed by the existence of the Lax pair and dual Lax pair. The cKP3-4 system can be bilinearized by using Hirota's bilinear operators after introducing an additional auxiliary variable. Exact solutions of the cKP3-4 equation possess some peculiar and interesting properties which are not valid for the KP3 and KP4 equations. For instance, the soliton molecules and the missing D'Alembert type solutions (the arbitrary travelling waves moving in one direction with a fixed model dependent velocity) including periodic kink molecules, periodic kink-antikink molecules, few-cycle solitons, and envelope solitons exist for the cKP3-4 equation but not for the separated KP3 equation and the KP4 equation.

Keywords:  (2+1)-dimensional KdV equations      Lax and dual Lax pairs      soliton and soliton molecules      D'Alembert type waves  
Received:  06 April 2020      Revised:  19 May 2020      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11975131 and 11435005) and K. C. Wong Magna Fund in Ningbo University.

Corresponding Authors:  Sen-Yue Lou     E-mail:  lousenyue@nbu.edu.cn

Cite this article: 

Sen-Yue Lou(楼森岳) A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures 2020 Chin. Phys. B 29 080502

[1] Crighton D G 1995 Appl. Math. 39 39
[2] Guo H Y, Wang Z H and Wu K 1991 Phys. Lett. B 264 277
[3] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[4] Hirota R 2004 The direct method in soliton theory (Edited and translated by Nagai A, Nimmo J and Gilson C, Cambridge Tracts in Mathematics No. 155(1st Edn.)) (Cambrifge:Cambridge University Press) pp. 1-61
[5] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformations in Integrable Systems:Theory and their Applications to Geommetry (1st Edn.) (Dordrecht, Netherland:Springer) pp. 1-64
[6] Kadomtsev B B and Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[7] Nizhnik L P 1980 Sov. Phys. Dokl. 25 706
[8] Veselov A P and Novikov S P 1984 Sov. Math. Dokl. 30 588
[9] Novikov S P and Veselov A P 1986 Physica D 18 267
[10] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[11] Lou S Y and Ruan H Y 2001 J. Phys. A:Math. Gen. 35 305
[12] Boiti M, Leon J J P, Manna M and Pempinelli F 1986 Inverse Problems 2 271
[13] Ito M 1990 J. Phys. Soc. Jpn. 49 771
[14] Bogoyavlenskii G I 1990 Russ. Math. Surveys 45 1
[15] Lou S Y 1997 Commun. Theor. Phys. 28 41
[16] Stratmann M, Pagel T and Mitschke F 2005 Phys. Rev. Lett. 95 143902
[17] Herink G, Kurtz F, Jalali B, Solli D R and Ropers C 2017 Science 356 50
[18] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[19] Wang C, Wang L, Li X H, et al. 2019 Nanotechnology 30 025204
[20] Łakomy K, Nath R and Santos L 2012 Phys. Rev. A 86 013610
[21] Peng J S, Boscolo S, Zhao Z H and Zeng H P 2019 Sci. Adv. 5 eaax1110
[22] Crasovan L C, Kartashov Y V, Mihalache D, Torner L, Kivshar Y S and Perez-Garcia V M 2003 Phys. Rev. E 67 046610
[23] Yin C, Berloff N G, Perez-Garcia V M, Novoa D, Carpentier A V and Michinel H 2011 Phys. Rev. A 83 051605
[24] Lou S Y 2020 J. Phys. Commun. 4 041002
[25] Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208(in Chinese)
[26] Fokas A S and Liu Q M 1996 Phys. Rev. Lett. 77 2347
[27] Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
[28] Cui C J, Tang X Y and Cui Y J 2020 Appl. Math. Lett. 102 106109
[29] Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271
[30] Lou S Y 1993 Phys. Rev. Lett. 71 4099
[31] Lou S Y 1993 J. Phys. A:Math. Gen. 26 4387
[32] Lou S Y 1994 J. Math. Phys. 35 1755
[33] Lou S Y 1998 Physica Scripta 57 481
[34] Hu X B, Lou S Y and Qian X M 2009 Stud. Appl. Math. 122 305
[35] Lou S Y 2018 J. Math. Phys. 59 083507
[36] Lou S Y 2020 Acta Phys. Sin. 69 010503(in Chinese)
[37] Im S J, Husakou A and Herrmann J 2010 Phys. Rev. A 82 025801
[38] Sun Y Y and Wu H 2013 Phys. Scr. 88 065001
[39] Gao Z J and Lin J 2018 Opt. Express 26 9027
[40] Gao Z J, Li H J and Lin J 2019 J. Opt. Soc. Am. B 36 312
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[6] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[7] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[8] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[9] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[10] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[11] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[12] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[13] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[14] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!