Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 093201    DOI: 10.1088/1674-1056/ab9431
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Photoelectron imaging on vibrational excitation and Rydberg intermediate states in multi-photon ionization process of NH3 molecule

Ya-Nan Sun(孙亚楠)1,4, Yan-Hui Wang(王艳辉)2, Le-Le Song(宋乐乐)1,3, Hai-Bin Du(杜海滨)5, Xiao-Chun Wang(王晓春)1,4, Lan-Lai He(赫兰海)1,4, Si-Zuo Luo(罗嗣佐)1,4, Qin Yang(杨钦)1,4, Jing Leng(冷静)1,4, Fu-Chun Liu(刘福春)1,4
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 College of Electronic Science and Engineering, State Key Laboratory on Integrated Optoelectronics, Jilin University, Changchun 130012, China;
3 Jilin Institute of Chemical Technology, Jilin 132022, China;
4 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China;
5 Department of Comprehensive, Harbin City Vocational College, Haerbin 150000, China
Abstract  The ionization processes of NH3 molecule are studied by photoelectron velocity map imaging technique in a linearly polarized 400-nm femtosecond laser field. The two-dimensional photoelectron images from ammonia molecules under different laser intensities are obtained. In the slow electron region, the values of kinetic energy of photoelectrons corresponding to peaks 1, 2, 3, and 4 are 0.27, 0.86, 1.16, and 1.6 eV, respectively. With both the kinetic energy and angular distribution of photoelectrons from NH3 molecules, we can confirm that the two-photon excited intermediate Rydberg state is A~1 A2" (v2'=3) state for photoelectron peaks 2, 3, 4, and the three peaks are marked as 1223 (2 + 2), 1123 (2 + 2), and 1023 (2 + 2) multi-photon processes, respectively. Then, peak 1 is found by adding a hexapole between the source chamber and the detection chamber to realize the rotational state selection and beam focusing. Peak 1 is labeled as the 1323 (3 + 1) multi-photon process through the intermediate Rydberg state E~1A1'. The phenomena of channel switching are found in the slow electron kinetic energy distributions. Our calculations and experimental results indicate that the stretching vibrational mode of ammonia molecules varies with channels, while the umbrella vibration does not. In addition, we consider and discuss the ac-Stark effect in a strong laser field. Peaks 5 and 6 are marked as (2 + 2 + 1) and (2 + 2 + 2) above threshold ionization processes in the fast electron region.
Keywords:  photoelectron velocity map imaging      photelectron angular distributions      Rydberg state      hexapole  
Received:  31 March 2020      Revised:  14 May 2020      Accepted manuscript online:  19 May 2020
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  32.60.+i (Zeeman and Stark effects)  
  32.80.Fb (Photoionization of atoms and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574116, 11534004, and 10704028).
Corresponding Authors:  Fu-Chun Liu     E-mail:  lfc@jlu.edu.cn

Cite this article: 

Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Le-Le Song(宋乐乐), Hai-Bin Du(杜海滨), Xiao-Chun Wang(王晓春), Lan-Lai He(赫兰海), Si-Zuo Luo(罗嗣佐), Qin Yang(杨钦), Jing Leng(冷静), Fu-Chun Liu(刘福春) Photoelectron imaging on vibrational excitation and Rydberg intermediate states in multi-photon ionization process of NH3 molecule 2020 Chin. Phys. B 29 093201

[1] Popmintchev T 2013 Am. Assoc. For Advancement Sci. Annu. Meeting Hynes Convention Center, February 17
[2] Kulander K C 1987 Phys. Rev. A 35 445
[3] Fittinghoff D N, Bolton P R and Chang B 1992 Phys. Rev. Lett. 69 2642
[4] Ganeev R A 2009 Phys-usp+ 52 65
[5] VagerZ, Naaman R and Kanter E P 1989 Science 244 426
[6] Ashfold M N R, Langford S R, Morgan R A, Orr-Ewing A, Western C, Scheper C and De Lange C 1998 Eur. Phys. J. D 4 189
[7] Li M, Zhang P, Luo S, ZhouY, Zhang Q B, Lan P F and Lu P X 2015 Phys. Rev. A 92 063404
[8] Oppermann M, Weber S J and Frasinski L J 2013 Phys. Rev. A 88 043432
[9] Yuan L W, Wang Y Q and Li W 2004 Sci. China- Chem. 47 283
[10] Tang Y, Suzuki Y, Horio T and Suzuki T 2010 Phys. Rev. Lett. 104 073002
[11] Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
[12] Song L L, Sun Y N, Wang Y H, Wang X C, He L H, Luo S Z, Hu W H, Tong Q N Ding D J and Liu F 2019 Chin. Phys. B 28 063201
[13] Cooper J and Zare R N 1968 J. Chem. Phys. 48 942
[14] Wu J, Schmidt L, Kunitski M, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Czasch A and Dörner R 2012 Phys. Rev. Lett. 108 183001
[15] Paul H, Katharine L R and MichaelS 2010 Mol. Phys. 108 1045
[16] BieSuer J, Schnieder L, Schnieder J, et al. 1988 J. Chem. Phys. 88 3607
[17] Xie J, Jiang B, Li G, Yang S, Xu J, Sha G, Xu D, Lou N and Zhang C 2000 Faraday Discuss 115 127
[18] Rodríguez J D, González M G, Rubio L L and Banares L 2014 Phys. Chem. Chem. Phys. 16 3757
[19] Nieman G C and Colson S D 1978 J. Chem. Phys. 68 5656
[20] Hockett P, Staniforth M, Reid K L and Townsend D 2009 Phys. Rev. Lett. 102 253002
[21] Meng Q T and Han K L 2004 J. Atom. Mol. Phys. B04 260
[22] Glownia J H, Riley S J, Colson S D and Nieman G C 1980 J. Chem. Phys. 73 4296
[23] Ashfold M N R, Western C M, Hudgens J W and Johnson R D 1996 Chem. Phys. Lett. 260 27
[24] Ashfold M N R, Dixon R N and Stickland R J 1984 Chem. Phys. 88 463
[25] Luo S Z, Zhu R H, He L H, Hu W, Li X, Ma P, Wang C C, Liu F C, Roeterdink W G, Stolte S and Ding D J 2015 Phys. Rev. A 91 053408
[26] Evans N L, Yu H, Roberts G M, Stavros V G and Ullrich S 2012 Phys. Chem. Chem. Phys. 14 10401
[27] Bennewitz H G, Paul W and Schlier C Z 1955 Physik 141 6
[28] Dunlavey S J, Dyke J M, Jonathan N and Morris A 1980 Mol. Phys. 39 1121
[29] Locht R, Servais C, Ligot M and Momigny J 1988 Chem. Phys. 123 443
[30] Liu F C, Jin M X, Gao X and Ding D J 2006 Chin. Phys. Lett. 23 344
[31] Liu F C, Jin M X and Ding D J 2006 Chin. Phys. Lett. 23 1165
[32] Song L L, WangY H, Wang X C, Sun H T, He L H, Luo S Z, Hu W H, Li D X, Zhu W H, Sun Y N, Ding D J and Liu F C 2019 Chin. Phys. B 28 023101
[33] Mcfarland B K, Farrell J P, Bucksbaum P H and Gühr M 2008 Science 322 1232
[34] Farrell J P, Petretti S, Förster J, McFarland B K, Spector L S, Vanne Y V, Decleva P, Bucksbaum P H, Saenz A and Gühr M 2011 Phys. Rev. Lett. 107 083001
[35] Ohmura H and Nakanaga T 2004 J. Chem. Phys. 120 5176
[1] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[2] Nonlinear spectroscopy of three-photon excitation of cesium Rydberg atoms in vapor cell
Jiabei Fan(樊佳蓓), Yunhui He(何云辉), Yuechun Jiao(焦月春), Liping Hao(郝丽萍), Jianming Zhao(赵建明), and Suotang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 034207.
[3] Controlling Rydberg excitation process with shaped intense ultrashort laser pulses
Xiao-Yun Zhao(赵晓云), Chun-Cheng Wang(王春成), Shi-Lin Hu(胡师林), Wei-Dong Li(李卫东), Jing Chen(陈京), Xiao-Lei Hao(郝小雷). Chin. Phys. B, 2019, 28(8): 083202.
[4] Photoelectron imaging of resonance-enhanced multiphoton ionization and above-threshold ionization of ammonia molecules in a strong 800-nm laser pulse
Le-Le Song(宋乐乐), Ya-Nan Sun(孙亚楠), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Qiu-Nan Tong(佟秋男), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春). Chin. Phys. B, 2019, 28(6): 063201.
[5] Imaging alignment of rotational state-selected CH3I molecule
Le-Le Song(宋乐乐), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Hong-Tao Sun(孙洪涛), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Dong-Xu Li(李东旭), Wen-Hui Zhu(朱文会), Ya-Nan Sun(孙亚楠), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春). Chin. Phys. B, 2019, 28(2): 023101.
[6] Three-dimensional hexapole focusing of pulsed molecular beam for state selection
Yi Ke(柯毅), Xiao-Bing Deng(邓小兵), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(8): 083701.
[7] Photoelectron angular distributions of H ionization in low energy regime: Comparison between different potentials
Shu-Na Song(宋舒娜), Hao Liang(梁昊), Liang-You Peng(彭良友), Hong-Bing Jiang(蒋红兵). Chin. Phys. B, 2016, 25(9): 093201.
[8] Field ionization process of Eu 4f76snp Rydberg states
Zhang Jing (张婧), Shen Li (沈礼), Dai Chang-Jian (戴长建). Chin. Phys. B, 2015, 24(11): 113201.
[9] Lifetimes of Rydberg states of Eu atoms
Jing Hua (荆华), Ye Shi-Wei (野仕伟), Dai Chang-Jian (戴长建). Chin. Phys. B, 2015, 24(1): 013203.
[10] Stark spectra of Rydberg states in atomic cesium in the vicinity of n=18
Dong Hui-Jie (董慧杰), Wang Ting (王婷), Li Chang-Yong (李昌勇), Zhao Jian-Ming (赵建明), Zhang Lin-Jie (张临杰). Chin. Phys. B, 2013, 22(7): 073201.
[11] Measurement of the argon-gas-induced broadening and line shifting of the barium Rydberg level 6s24d 1D2 by two-photon resonant nondegenerate four-wave mixing
Sun Jiang(孙江), Xiong Zhi-Qiang(熊志强), Sun Juan(孙娟), Wang Ying(王颖), and Su Hong-Xin(苏红新) . Chin. Phys. B, 2012, 21(6): 064215.
[12] Experimental study of bound and autoionizing Rydberg states of the europium atom
Xiao Ying(肖颖), Dai Chang-Jian(戴长建), and Qin Wen-Jie(秦文杰). Chin. Phys. B, 2010, 19(6): 063202.
[13] Experimental study of highly excited even-parity bound states of the Sm atom
Qin Wen-Jie(秦文杰), Dai Chang-Jian(戴长建), Xiao Ying(肖颖), and Zhao Hong-Ying(赵洪英). Chin. Phys. B, 2009, 18(8): 3384-3394.
[14] Energy level analyses of even-parity J = 1 and 2 Rydberg states of Sn I by multichannel quantum defect theory
You Shuai(由帅), Feng Yan-Yan(凤艳艳), and Dai Zhen-Wen(戴振文). Chin. Phys. B, 2009, 18(6): 2229-2237.
[15] Investigation of odd-parity Rydberg states of Eu I with autoionization detection
Xiao Ying(肖颖), Dai Chang-Jian(戴长建), and Qin Wen-Jie(秦文杰). Chin. Phys. B, 2009, 18(10): 4251-4258.
No Suggested Reading articles found!