CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anomalous magnetoresistance in detwinned EuFe2As2 |
Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太) |
Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract The in-plane magnetotransport of detwinned EuFe2As2 single crystal has been investigated. In the antiferromagnetic phase of Eu2+ spins, very different magnetoresistance results are observed upon the change of the external magnetic field direction and the current direction. This could be attributed to the tunable orientation of the Eu2+ spins under magnetic field. Electron scattering by spin fluctuation, superzone boundary effect, and cyclotron motion of charge carriers are used to interpret the observed anomalous magnetoresistance which is measured by using a current along a direction. The remarkable features of magnetoresistance suggest that itinerant electrons strongly couple with the spin configuration of Eu2+, which has a huge influence on the transport properties of EuFe2As2.
|
Received: 24 April 2020
Revised: 01 May 2020
Accepted manuscript online:
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JJCB27). |
Corresponding Authors:
Guotai Tan
E-mail: tangt@bnu.edu.cn
|
Cite this article:
Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太) Anomalous magnetoresistance in detwinned EuFe2As2 2020 Chin. Phys. B 29 077402
|
[1] |
Dai P C 2015 Rev. Mod. Phys. 87 855
|
[2] |
Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A H, Si Q and Dai P C 2014 Science 345 657
|
[3] |
Tian L, Liu P P, Xu Z, Li Y, Lu Z, Walker H C, Stuhr U, Tan G T, Lu X Y and Dai P C 2019 Phys. Rev. B 100 134509.
|
[4] |
Rosenthal E P, Andrade E F, C. Arguello J, Fernandes R M, Xing L Y, Wang X C, Jin C Q, Millis A J and Pasupathy A N 2014 Nat. Phys. 10 225
|
[5] |
Luo H Q, Yamani Z, Chen Y C, Lu X Y, Wang M, Li S L, T. Maier A, Danilkin S, Adroja D T and Dai P C 2012 Phys. Rev. B 86 024508.
|
[6] |
Fisher I R, Degiorgi L and Shen Z X 2011 Rep. Prog. Phys. 74 124506
|
[7] |
Tanatar M A, Blomberg E C, Kreyssig A, Kim M G, Ni N, Thaler A, Budko S L, Canfield P C, Goldman A I, Mazin I I and Prozorov R 2010 Phys. Rev. B 81 184508
|
[8] |
Yi M, Luc D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
|
[9] |
Chu J H, Kuo H K, Analytis J G and Fisher I R 2012 Science 337 710
|
[10] |
Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
|
[11] |
Halbritter J 1993 Phys. Rev. B 48 9735
|
[12] |
Avci S, Chmaissem O, Allredl J M, Rosenkranz S, Eremin I, Chubukov A V, Bugaris D E, Chung D Y, Kanatzidis M G, Castellan J P, Schlueter J A, Claus H, Khalyavin D D, Manuel P, Daoud-Aladine A and Osborn R 2014 Nat. Commun. 5 3845
|
[13] |
Chu J H, Analytis J G, DeGreve K, McMahon P, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
|
[14] |
Blomberg E C, Tanatar M A, Kreyssig A, Ni N, Thaler A, Hu R, Budko S L, Canfield P C, Goldman A I and Prozorov R 2011 Phys. Rev. B 83 134505
|
[15] |
Zapf S, Sting C, Post K W, Maiwald J, Bach N, Pietsch I, Neubauer D, Löhle A, Clauss C, Jiang S, Jeevan H S, Basov D N, Gegenwart P and Dressel M 2014 Phys. Rev. Lett. 113 227001
|
[16] |
Tegel M, Rotter M, Wei V, Schappacher F M, Pöttgen R and Johrendt D 2008 J. Phys.: Condens. Matter 20 452201
|
[17] |
Jeevan H S, Hossain Z, Kasinathan D, Rosner H, Geibel C and Gegenwart P 2008 Phys. Rev. B 78 052502.
|
[18] |
Ren Z, Zhu Z, Jiang S, Xu X, Tao Q, Wang C, Feng C, Cao G H and Xu Z A 2008 Phys. Rev. B 78 052501
|
[19] |
Miclea C F, Nicklas M, Jeevan H S, Kasinathan D, Hossain Z, Rosner H, Gegenwart P, Geibel C and Steglich F 2009 Phys. Rev. B 79 212509
|
[20] |
Ren Z, Tao Q, Jiang S, Feng C, Wang C, Dai J, Cao G and Xu Z 2009 Phys. Rev.Lett. 102 137002
|
[21] |
Jiao W H, Tao Q, Bao J K, Sun Y L, Feng C M, Xu Z A, Nowik I, Felner I and Cao G H 2011 Europhys. Lett. 95 67007
|
[22] |
Jiang S, Xing H, Xuan G, Ren Z, Wang C, Xu Z A and Cao G 2009 Phys. Rev. B 80 184514
|
[23] |
Paramanik U B, Das D, Prasad R and Hossain Z 2013 J. Phys.: Condens. Matter 25 265701
|
[24] |
Jeevan H S, Hossain Z, Kasinathan D, Rosner H, Geibel C and Gegenwart P 2008 Phys. Rev. B 78 092406
|
[25] |
Xiao Y, Su Y, Schmidt W, Schmalzl K, Kumar C M N, Price S, Chatterji T, Mittal R, Chang L J, Nandi S, Kumar N, Dhar S K, Thamizhavel A and Brueckel Th 2010 Phys. Rev. B 81 220406(R)
|
[26] |
Maiwald J, Mazin I I and Gegenwart P 2018 Phys. Rev. X 8 011011
|
[27] |
Jiang S, Luo Y K, Ren Z, Zhu Z W, Wang C, Xu X F, Tao Q, Cao G H and Xu Z A 2009 New J. Phys. 11 025007
|
[28] |
Chuang M, Allan M P, Lee J, Xie Y, Ni N, Budko S L, Boebinger G S Canfield P C and Davis J C 2010 Science 327 181
|
[29] |
Li S, Wilson S D, Mandrus D, Zhao B, Onose Y, Tokura Y and Dai P C 2005 Phys. Rev. B 71 054505
|
[30] |
Lavrov A N, Kang H J, Kurita Y, Suzuki T, Komiya S, Lynn J W, Lee S H, Dai P C and Ando Y 2004 Phys. Rev. Lett. 92 227003
|
[31] |
Perna P, Maccariello D, Ajejas F, Guerrero R, Mechin L, Flament S, Santamaria J, Miranda R and Camarero J 2017 Advanced Functional Materials 27 1700664
|
[32] |
Man H R, Lu X Y, Chen J S, Zhang R, Zhang W L, Luo H Q, Kulda J, Ivanov A, Keller T, Morosan E, Si Q M and Dai P C 2015 Phys. Rev. B 92 134521
|
[33] |
Yamada H and Takada S 1973 J. Phys. Soc. Jpn. 34 51
|
[34] |
Xiao Y G, Su Y, Nandi S, Price S, Schmitz B, Kumar C M N, Mittal R, Chatterji T, Kumar N, Dhar S K, Thamizhavel A and Brückel Th 2012 Phys. Rev. B 85 094504
|
[35] |
Nigam A K, Roy S B and Chaddah P 1999 Phys. Rev. B 60 3002
|
[36] |
Radha S, Roy S B and Nigam A K 2000 J. Appl. Phys. 87 6803
|
[37] |
Pippard A B 1989 Magnetoresistance in Metals (Cambridge: Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|