Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077402    DOI: 10.1088/1674-1056/ab90e4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anomalous magnetoresistance in detwinned EuFe2As2

Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太)
Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  The in-plane magnetotransport of detwinned EuFe2As2 single crystal has been investigated. In the antiferromagnetic phase of Eu2+ spins, very different magnetoresistance results are observed upon the change of the external magnetic field direction and the current direction. This could be attributed to the tunable orientation of the Eu2+ spins under magnetic field. Electron scattering by spin fluctuation, superzone boundary effect, and cyclotron motion of charge carriers are used to interpret the observed anomalous magnetoresistance which is measured by using a current along a direction. The remarkable features of magnetoresistance suggest that itinerant electrons strongly couple with the spin configuration of Eu2+, which has a huge influence on the transport properties of EuFe2As2.
Keywords:  magnetoresistance      spin      reorientation      iron pnictides  
Received:  24 April 2020      Revised:  01 May 2020      Accepted manuscript online: 
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  74.25.-q (Properties of superconductors)  
  73.43.Qt (Magnetoresistance)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JJCB27).
Corresponding Authors:  Guotai Tan     E-mail:  tangt@bnu.edu.cn

Cite this article: 

Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太) Anomalous magnetoresistance in detwinned EuFe2As2 2020 Chin. Phys. B 29 077402

[1] Dai P C 2015 Rev. Mod. Phys. 87 855
[2] Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A H, Si Q and Dai P C 2014 Science 345 657
[3] Tian L, Liu P P, Xu Z, Li Y, Lu Z, Walker H C, Stuhr U, Tan G T, Lu X Y and Dai P C 2019 Phys. Rev. B 100 134509.
[4] Rosenthal E P, Andrade E F, C. Arguello J, Fernandes R M, Xing L Y, Wang X C, Jin C Q, Millis A J and Pasupathy A N 2014 Nat. Phys. 10 225
[5] Luo H Q, Yamani Z, Chen Y C, Lu X Y, Wang M, Li S L, T. Maier A, Danilkin S, Adroja D T and Dai P C 2012 Phys. Rev. B 86 024508.
[6] Fisher I R, Degiorgi L and Shen Z X 2011 Rep. Prog. Phys. 74 124506
[7] Tanatar M A, Blomberg E C, Kreyssig A, Kim M G, Ni N, Thaler A, Budko S L, Canfield P C, Goldman A I, Mazin I I and Prozorov R 2010 Phys. Rev. B 81 184508
[8] Yi M, Luc D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[9] Chu J H, Kuo H K, Analytis J G and Fisher I R 2012 Science 337 710
[10] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[11] Halbritter J 1993 Phys. Rev. B 48 9735
[12] Avci S, Chmaissem O, Allredl J M, Rosenkranz S, Eremin I, Chubukov A V, Bugaris D E, Chung D Y, Kanatzidis M G, Castellan J P, Schlueter J A, Claus H, Khalyavin D D, Manuel P, Daoud-Aladine A and Osborn R 2014 Nat. Commun. 5 3845
[13] Chu J H, Analytis J G, DeGreve K, McMahon P, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[14] Blomberg E C, Tanatar M A, Kreyssig A, Ni N, Thaler A, Hu R, Budko S L, Canfield P C, Goldman A I and Prozorov R 2011 Phys. Rev. B 83 134505
[15] Zapf S, Sting C, Post K W, Maiwald J, Bach N, Pietsch I, Neubauer D, Löhle A, Clauss C, Jiang S, Jeevan H S, Basov D N, Gegenwart P and Dressel M 2014 Phys. Rev. Lett. 113 227001
[16] Tegel M, Rotter M, Wei V, Schappacher F M, Pöttgen R and Johrendt D 2008 J. Phys.: Condens. Matter 20 452201
[17] Jeevan H S, Hossain Z, Kasinathan D, Rosner H, Geibel C and Gegenwart P 2008 Phys. Rev. B 78 052502.
[18] Ren Z, Zhu Z, Jiang S, Xu X, Tao Q, Wang C, Feng C, Cao G H and Xu Z A 2008 Phys. Rev. B 78 052501
[19] Miclea C F, Nicklas M, Jeevan H S, Kasinathan D, Hossain Z, Rosner H, Gegenwart P, Geibel C and Steglich F 2009 Phys. Rev. B 79 212509
[20] Ren Z, Tao Q, Jiang S, Feng C, Wang C, Dai J, Cao G and Xu Z 2009 Phys. Rev.Lett. 102 137002
[21] Jiao W H, Tao Q, Bao J K, Sun Y L, Feng C M, Xu Z A, Nowik I, Felner I and Cao G H 2011 Europhys. Lett. 95 67007
[22] Jiang S, Xing H, Xuan G, Ren Z, Wang C, Xu Z A and Cao G 2009 Phys. Rev. B 80 184514
[23] Paramanik U B, Das D, Prasad R and Hossain Z 2013 J. Phys.: Condens. Matter 25 265701
[24] Jeevan H S, Hossain Z, Kasinathan D, Rosner H, Geibel C and Gegenwart P 2008 Phys. Rev. B 78 092406
[25] Xiao Y, Su Y, Schmidt W, Schmalzl K, Kumar C M N, Price S, Chatterji T, Mittal R, Chang L J, Nandi S, Kumar N, Dhar S K, Thamizhavel A and Brueckel Th 2010 Phys. Rev. B 81 220406(R)
[26] Maiwald J, Mazin I I and Gegenwart P 2018 Phys. Rev. X 8 011011
[27] Jiang S, Luo Y K, Ren Z, Zhu Z W, Wang C, Xu X F, Tao Q, Cao G H and Xu Z A 2009 New J. Phys. 11 025007
[28] Chuang M, Allan M P, Lee J, Xie Y, Ni N, Budko S L, Boebinger G S Canfield P C and Davis J C 2010 Science 327 181
[29] Li S, Wilson S D, Mandrus D, Zhao B, Onose Y, Tokura Y and Dai P C 2005 Phys. Rev. B 71 054505
[30] Lavrov A N, Kang H J, Kurita Y, Suzuki T, Komiya S, Lynn J W, Lee S H, Dai P C and Ando Y 2004 Phys. Rev. Lett. 92 227003
[31] Perna P, Maccariello D, Ajejas F, Guerrero R, Mechin L, Flament S, Santamaria J, Miranda R and Camarero J 2017 Advanced Functional Materials 27 1700664
[32] Man H R, Lu X Y, Chen J S, Zhang R, Zhang W L, Luo H Q, Kulda J, Ivanov A, Keller T, Morosan E, Si Q M and Dai P C 2015 Phys. Rev. B 92 134521
[33] Yamada H and Takada S 1973 J. Phys. Soc. Jpn. 34 51
[34] Xiao Y G, Su Y, Nandi S, Price S, Schmitz B, Kumar C M N, Mittal R, Chatterji T, Kumar N, Dhar S K, Thamizhavel A and Brückel Th 2012 Phys. Rev. B 85 094504
[35] Nigam A K, Roy S B and Chaddah P 1999 Phys. Rev. B 60 3002
[36] Radha S, Roy S B and Nigam A K 2000 J. Appl. Phys. 87 6803
[37] Pippard A B 1989 Magnetoresistance in Metals (Cambridge: Cambridge University Press)
[1] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[4] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[5] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[6] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[7] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[8] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[9] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[10] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[11] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[12] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[13] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[14] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[15] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
No Suggested Reading articles found!