Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088201    DOI: 10.1088/1674-1056/ab9610
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator

Zhao Yan(闫昭)1,2, Hongyi Pan(潘弘毅)1,2, Junyang Wang(汪君洋)1,2, Rusong Chen(陈汝颂)1,2, Fei Luo(罗飞)4, Xiqian Yu(禹习谦)1,2,3, Hong Li(李泓)1,2,3
1 Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Yangtze River Delta Physics Research Center Co., Ltd., Liyang 213300, China;
4 Tianmulake Excellent Anode Materials Co., Ltd., Liyang 213300, China
Abstract  

The dissolution of transition metal (TM) cations from oxide cathodes and the subsequent migration and deposition on the anode lead to the deconstruction of cathode materials and uncontrollable growth of solid electrode interphase (SEI). The above issues have been considered as main causes for the performance degradation of lithium-ion batteries (LIBs). In this work, we reported that the solid oxide electrolyte Li1.5Al0.5Ti1.5(PO4)3 (LATP) coating on polyethylene (PE) polymer separator can largely block the TM dissolution and deposition in LIBs. Scanning electron microscopy (SEM), second ion mass spectroscopy (SIMS), and Raman spectroscopy characterizations reveal that the granular surface of the LATP coating layer is converted to a dense morphology due to the reduction of LATP at discharge process. The as-formed dense surface layer can effectively hinder the TM deposition on the anode electrode and inhibit the TM dissolution from the cathode electrode. As a result, both the LiCoO2/SiO-graphite and LiMn2O4/SiO-graphite cells using LATP coated PE separator show substantially enhanced cycle performances compared with those cells with Al2O3 coated PE separator.

Keywords:  transition metal dissolution      cathode      lithium-ion batteries      solid electrolyte      separator  
Received:  21 April 2020      Revised:  08 May 2020      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  62.23.Pq (Composites (nanosystems embedded in a larger structure))  
  65.40.gk (Electrochemical properties)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2016YFB0100100) and the National Natural Science Foundation of China (Grant Nos. 51822211, U1932220, U1964205, and U19A2018).

Corresponding Authors:  Xiqian Yu, Hong Li     E-mail:  hli@iphy.ac.cn;xyu@iphy.ac.cn

Cite this article: 

Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓) Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator 2020 Chin. Phys. B 29 088201

[1] Armand M and Tarascon J M 2008 Nature 451 652
[2] Liang Y, Zhao C Z, Yuan H, Chen Y, Zhang W, Huang J Q, Yu D, Liu Y, Titirici M M, Chueh Y L, Yu H and Zhang Q 2019 Infomat 1 6
[3] Liu C, Li F, Ma L P and Cheng H M 2010 Adv. Mater. 22 E28
[4] Li W Z, Wang Z, Ban L, Wang J and Lu S 2019 Acta Chim. Sin. 77 1115
[5] Zhan C, Wu T, Lu J and Amine K 2018 Energy Environ. Sci. 11 243
[6] Zhang X Q, Wang X M, Li B Q, Shi P, Huang J Q, Chen A and Zhang Q 2020 J. Phys. Chem. A 8 4283
[7] Zhou G, Sun X, Li Q, Wang X, Zhang J, Yang W, Yu X, Xiao R J and Li H 2020 J. Phys. Chem. Lett. 11 3051
[8] Tang D, Sun Y, Yang Z, Ben L, Gu L and Huang X 2014 Chem. Mater. 26 3535
[9] Wang L F, Ou C C, Striebel K A and Chen J S 2003 J. Electrochem. Soc. 150 A905
[10] Delacourt C, Kwong A, Liu X, Qiao R, Yang W L, Lu P, Harris S J and Srinivasan V 2013 J. Electrochem. Soc. 160 A1099
[11] Zhan C, Lu J, Jeremy Kropf A, Wu T, Jansen A N, Sun Y K, Qiu X and Amine K 2013 Nat. Commun. 4 2437
[12] Qian Y, Kang Y, Hu S, Shi Q, Chen Q, Tang X, Xiao Y, Zhao H, Luo G, Xu K and Deng Y 2020 ACS Appl. Mater. Interfaces 12 10443
[13] Gutierrez A and Manthiram A 2013 J. Electrochem. Soc. 160 A901
[14] Hou Y, Chang K, Tang H, Li B, Hou Y and Chang Z 2019 Electrochim. Acta 319 587
[15] Fu L J, Liu H, Li C, Wu Y P, Rahm E, Holze R and Wu H Q 2006 Solid State Sci. 8 113
[16] Warburton R E, Young M J, Letourneau S, Elam J W and Greeley J 2020 Chem. Mater. 32 1794
[17] Yamane H, Inoue T, Fujita M and Sano M 2001 J. Power Sources 99 60
[18] Zhou H M, Liu B, Xiao D M, Yin C J and Li J 2019 J. Mater. Sci.:Mater. Electron. 30 5098
[19] Banerjee A, Ziv B, Shilina Y, Luski S, Aurbach D and Halalay I C 2017 ACS Energy Lett. 2 2388
[20] Manthiram A, Yu X and Wang S 2017 Nat Rev. Mater. 2 16103
[21] Yang Q, Huang J, Li Y, Wang Y, Qiu J, Zhang J, Yu H, Yu X, H Li H and Chen L 2018 J. Power Sources 388 65
[22] Lee J K, Lee J H, Kim B K and Yoon W Y 2014 Electrochim. Acta 127 1
[23] Zhao J, Lee H W, Sun J, Yan K, Liu Y, Liu W, Lu Z, Lin D, Zhou G and Cui Y 2016 Proc. Natl. Acad. Sci. USA 113 7408
[24] Liu L, Zhou M, Wang G, Guo H, Tian F and Wang X 2012 Electrochim. Acta 70 136
[25] Luo J Y, Chen L J, Zhao Y J, He P and Xia Y Y 2009 J. Power Sources 194 1075
[26] Lewis J A, Cortes F J Q, Boebinger M G, Tippens J, Marchese T S, Kondekar N, Liu X, Chi M and McDowell M T 2019 ACS Energy Lett. 4 591
[27] Le Van-Jodin L, Rouchon D, Le V H, Chevalier I, Brun J and Secouard C 2019 J. Raman Spectrosc. 50 1594
[28] Matsuda Y, Kuwata N, Okawa T, Dorai A, Kamishima O and Kawamura J 2019 Solid State Ion. 335 7
[1] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[2] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[3] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[4] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[5] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[6] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[7] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[8] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[9] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[10] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[11] Light-controlled pulsed x-ray tube with photocathode
Hao Xuan(宣浩), Yong-An Liu(刘永安), Peng-Fei Qiang(强鹏飞), Tong Su(苏桐), Xiang-Hui Yang(杨向辉), Li-Zhi Sheng(盛立志), and Bao-Sheng Zhao(赵宝升). Chin. Phys. B, 2021, 30(11): 118502.
[12] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
[13] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[14] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[15] Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles
Zhi-Sen Jiang(蒋之森), Shao-Feng Li(李少锋), Zheng-Rui Xu(许正瑞), Dennis Nordlund, Hendrik Ohldag, Piero Pianetta, Jun-Sik Lee, Feng Lin(林锋), Yi-Jin Liu(刘宜晋). Chin. Phys. B, 2020, 29(2): 026103.
No Suggested Reading articles found!