CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thickness-dependent magnetic order and phase transition in V5S8 |
Rui-Zi Zhang(张瑞梓)1, Yu-Yang Zhang(张余洋)1,2, Shi-Xuan Du(杜世萱)1,2 |
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 2 CAS Centre for Excellence in Topological Quantum Computation, Beijing 100190, China |
|
|
Abstract V5S8 is an ideal candidate to explore the magnetism at the two-dimensional (2D) limit. A recent experiment has shown that the V5S8 thin films exhibit an antiferromagnetic (AFM) to ferromagnetic (FM) phase transition with reducing thickness. Here, for the first time, using density functional theory calculations, we report the antiferromagnetic order of bulk V5S8, which is consistent with the previous experiments. The specific antiferromagnetic order is reproduced when Ueff = 2 eV is applied on the intercalated vanadium atoms within LDA. We find that the origin of the magnetic ordering is from superexchange interaction. We also investigate the thickness-dependent magnetic order in V5S8 thin films. It is found that there is an antiferromagnetic to ferromagnetic phase transition when V5S8 is thinned down to 2.2 nm. The main magnetic moments of the antiferromagnetic and ferromagnetic states of the thin films are located on the interlayered vanadium atoms, which is the same as that in the bulk. Meanwhile, the strain in the thin films also influences the AFM-FM phase transition. Our results not only reveal the magnetic order and origin in bulk V5S8 and thin films, but also provide a set of parameters which can be used in future calculations.
|
Received: 06 April 2020
Revised: 24 April 2020
Accepted manuscript online:
|
PACS:
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51922011 and 61888102), the National Key Research & Development Project of China (Grant Nos. 2016YFA0202300 and 2019YFA0308500), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000). A portion of the research was performed in CAS Key Laboratory of Vacuum Physics. |
Corresponding Authors:
Shi-Xuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱) Thickness-dependent magnetic order and phase transition in V5S8 2020 Chin. Phys. B 29 077504
|
[1] |
Burch K S, Mandrus D and Park J G 2018 Nature 563 47
|
[2] |
Gong C and Zhang X 2019 Science 363 eaav4450
|
[3] |
Seyler K L, Zhong D, Klein D R, Gao S, Zhang X, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2018 Nat. Phys. 14 277
|
[4] |
Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
|
[5] |
Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
|
[6] |
Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
|
[7] |
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
|
[8] |
Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778
|
[9] |
Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
|
[10] |
O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
|
[11] |
Zhuang H L and Hennig R G 2016 Phys. Rev. B 93 054429
|
[12] |
You J Y, Zhang Z, Gu B and Su G 2019 Phys. Rev. Appl. 12 024063
|
[13] |
Dong X J, You J Y, Gu B and Su G 2019 Phys. Rev. Appl. 12 014020
|
[14] |
Yin K, Zhang Y Y, Zhou Y, Sun L, Chisholm M F, Pantelides S T and Zhou W 2016 2D Mater. 4 011001
|
[15] |
Pan L, Wen H, Huang L, Chen L, Deng H X, Xia J B and Wei Z 2019 Chin. Phy. B 28 107504
|
[16] |
Hagmann J A, Li X, Chowdhury S, Dong S N, Rouvimov S, Pookpanratana S J, Man Yu K, Orlova T A, Bolin T B, Segre C U, Seiler D G, Richter C A, Liu X, Dobrowolska M and Furdyna J K 2017 New J. Phys. 19 085002
|
[17] |
Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408
|
[18] |
Yuan X Y, Xue X B, Si L F, Du J and Xu Q Y 2012 Chin. Phys. Lett. 29 097701
|
[19] |
Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P and Xu X 2018 Nat. Nanotech. 13 544
|
[20] |
Chen X Z, Liu H, Yin L F, Song C, Tan Y Z, Zhou X F, Li F, You Y F, Sun Y M and Pan F 2019 Phys. Rev. Appl. 11 024021
|
[21] |
Guo X, Li D and Xi L 2018 Chin. Phys. B 27 097506
|
[22] |
Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018 Nano Lett. 18 7658
|
[23] |
Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
|
[24] |
Oepen H P, Speckmann M, Millev Y and Kirschner J 1997 Phys. Rev. B 55 2752
|
[25] |
Yu C Q, Li H, Luo Y M, Zhu L Y, Qian Z H and Zhou T J 2019 Phys. Lett. A 383 2424
|
[26] |
Kouvel J S and Hartelius C C 1962 J. Appl. Phys. 33 1343
|
[27] |
Niu J, Yan B, Ji Q, Liu Z, Li M, Gao P, Zhang Y, Yu D and Wu X 2017 Phys. Rev. B 96 075402
|
[28] |
Hardy W J, Yuan J, Guo H, Zhou P, Lou J and Natelson D 2016 ACS Nano 10 5941
|
[29] |
Kresse G 1995 J. Non-Cryst. Solids 192-193 222
|
[30] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[31] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[32] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[33] |
Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
|
[34] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[35] |
Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
|
[36] |
Kawada I, Nakanoonoda M, Ishii M, Saeki M and Nakahira M 1975 J. Solid State Chem. 15 246
|
[37] |
Nakanishi M, Yoshimura K, Kosuge K, Goto T, Fujii T and Takada J 2000 J. Magn. Magn. Mater. 221 301
|
[38] |
Nozaki H, Umehara M, Ishizawa Y and Saeki M 1978 J. Phys. Chem. Solids 39 851
|
[39] |
Nozaki H and Ishizawa Y 1977 Phys. Lett. A 63 131
|
[40] |
Funahashi S, Nozaki H and Kawada I 1981 J. Phys. Chem. Solids 42 1009
|
[41] |
Silbernagel B G, Levy R B and Gamble F R 1975 Phys. Rev. B 11 4563
|
[42] |
Hurd C M 1982 Contemp. Phys. 23 469
|
[43] |
Zhang Y and Miller G J 2015 J. Phys. Chem. C 119 580
|
[44] |
Zhu M, Do D, Dela Cruz C R, Dun Z, Cheng J G, Goto H, Uwatoko Y, Zou T, Zhou H D, Mahanti S D and Ke X 2015 Phys. Rev. B 92 094419
|
[45] |
Yao J, Zhang Y, Wang P L, Lutz L, Miller G J and Mozharivskyj Y 2013 Phys. Rev. Lett. 110 077204
|
[46] |
Xie Y, Feng J, Xiang H and Gong X 2019 Chin. Phys. Lett. 36 056801
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|