Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 068501    DOI: 10.1088/1674-1056/ab8377
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-performance midwavelength infrared detectors based on InAsSb nBn design

Xuan Zhang(张璇)1,2, Qing-Xuan Jia(贾庆轩)1,2, Ju Sun(孙矩)1,2, Dong-Wei Jiang(蒋洞微)1,2,3, Guo-Wei Wang(王国伟)1,2,3, Ying-Qiang Xu(徐应强)1,2,3, Zhi-Chuan Niu(牛智川)1,2,3,4
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
3 Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  we report nBn photodetectors based on InAs0.91Sb0.09 with a 100% cut-off wavelength of 4.75 μm at 300 K. The band of an nBn detector is similar to that of a standard pin detector, but there is special wide bandgap AlAs0.08Sb0.92 barrier layer in the nBn detector, in which the depletion region of nBn detector exists. The nBn design has many advantages, such as low dark current and high quantum efficiency, because the nBn design can suppress the generation-recombination (GR) current that is the main composition of standard pin detector dark current. The constant slope of the Arrhenius plot of J0-1/T indicates the absence of the generation-recombination dark current. We fabricate an nBn detector with a quantum efficiency (QE) maximum of ~ 60% under -0.2-V bias voltage. The InAsSb nBn detectors may be a competitive candidate for midwavelength infrared detector.
Keywords:  infrared detector      InAsSb      nBn  
Received:  15 February 2020      Revised:  15 March 2020      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Project supported by the National Key Technologies Research and Development Program of China (Grant No. 2018YFA0209104) and the Major Program of the National Natural Science Foundation of China (Grant No. 61790581).
Corresponding Authors:  Guo-Wei Wang, Zhi-Chuan Niu     E-mail:  wangguowei@semi.ac.cn;zcniu@semi.ac.cn

Cite this article: 

Xuan Zhang(张璇), Qing-Xuan Jia(贾庆轩), Ju Sun(孙矩), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川) High-performance midwavelength infrared detectors based on InAsSb nBn design 2020 Chin. Phys. B 29 068501

[1] Youngdale E R, Meyer J R, Hoffman C A, Bartoli F J, Grein C H, Young P M, Ehrenreich H, Miles R H and Chow D H 1994 Appl. Phys. Lett. 64 3160
[2] Yen L T, Yoshinan K and Nobuya M 2019 Jpn. J. Appl. Phys. 58 081003
[3] Donetsky D, Svensson S P, Vorobjev L E and Belenky G 2009 Appl. Phys. Lett. 95 212104
[4] Svensson S P, Donetsky D, Wang D, Hier H, Crowne F J and Belenky G 2011 J. Cryst. Growth 334 103
[5] Grein C H, Garland J and Flatte M E 2009 J. Electron. Mater. 38 1800
[6] Philip K, Olga K, Steve G, Noam S, Inna L, Daniel A, Michael Y, Alex G, Tal F, Eyal B, Osnat M, Itay S, Eliezer W 2011 Opt. Eng. 50 061002
[7] Haddadi A, Chevallier R, Dehzangi A and Razeghi M 2017 Appl. Phys. Lett. 110 101104
[8] Maimon S and Wicks G W 2006 Appl. Phys. Lett. 89 151109
[9] Soibel A, Ting D Z, Hill C J, Fisher A M, Hoglund L, Keo S A and Gunapala S D 2016 Appl. Phys. Lett. 109 103505
[10] Pepper B, Soibel A, Ting D, Hill C, Khoshakhlagh A, Fisher A, Keo S and Gunapala S 2019 Infrared Phys. Technol. 99 64
[11] Ting D Z, Soibel A, Khoshakhlagh A, Keo S A, Rafol S B, Fisher A M, Pepper B J, Luong E M, Hill C J and Gunapala S D 2019 Infrared Phys. Technol. 97 210
[12] Wang P, Xia H, Li Q, Wang F, Zhang L, Li T, Martyniuk P, Rogalski A and Hu W 2019 Small 15 1904396
[13] Johnson J L, Samoska L A, Gossard A C, Merz J L, Jack M D, Chapman G R, Baumgratz B A, Kosai K and Johnson S M 1996 J. Appl. Phys. 80 1116
[1] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[2] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[3] Compact NbN resonators with high kinetic inductance
Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2020, 29(12): 128401.
[4] Gradient refractive structured NiCr thin film absorber for pyroelectric infrared detectors
Yunlu Lian(练芸路), He Yu(于贺), Zhiqing Liang(梁志清), Xiang Dong(董翔). Chin. Phys. B, 2019, 28(6): 067801.
[5] Development of small pixel HgCdTe infrared detectors
Ming Liu(刘铭), Cong Wang(王丛), Li-Qing Zhou(周立庆). Chin. Phys. B, 2019, 28(3): 037804.
[6] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[7] High material quality growth of AlInAsSb thin films on GaSb substrate by molecular beam epitaxy
Fa-Ran Chang(常发冉), Rui-Ting Hao(郝瑞亭), Tong-Tong Qi(齐通通), Qi-Chen Zhao(赵其琛), Xin-Xing Liu(刘欣星), Yong Li(李勇), Kang Gu(顾康), Jie Guo(郭杰), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(2): 028503.
[8] Development of long-wavelength infrared detector and its space-based application requirements
Junku Liu(刘军库), Lin Xiao(肖林), Yang Liu(刘阳), Longfei Cao(曹龙飞), Zhengkun Shen(申正坤). Chin. Phys. B, 2019, 28(2): 028504.
[9] A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates
Z K Zhang, W W Pan, J L Liu, W Lei. Chin. Phys. B, 2019, 28(1): 018103.
[10] Optoelectronic properties of single-crystalline GaInAsSb quaternary alloy nanowires
Meng-Zi Li(李梦姿), Xin-Liang Chen(陈新亮), Hong-Lai Li(李洪来), Xue-Hong Zhang(张学红), Zhao-Yang Qi(祁朝阳), Xiao-Xia Wang(王晓霞), Peng Fan(范鹏), Qing-Lin Zhang(张清林), Xiao-Li Zhu(朱小莉), Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2018, 27(7): 078101.
[11] Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well
Ling Sun(孙令), Lu Wang(王禄), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Jun Fang(方俊), Li-Li Xie(谢莉莉), Zhi-Biao Hao(郝智彪), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047209.
[12] Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application
Qi Li(李琦), Bing-qiang Yu(于兵强), Zhao-feng Li(李兆峰), Xiao-feng Wang(王晓峰), Zi-chen Zhang(张紫辰), Ling-feng Pan(潘岭峰). Chin. Phys. B, 2017, 26(8): 085202.
[13] Fabrication of superconducting NbN meander nanowires by nano-imprint lithography
Mei Yang(杨美), Li-Hua Liu(刘丽华), Lu-Hui Ning(宁鲁慧), Yi-Rong Jin(金贻荣), Hui Deng(邓辉), Jie Li(李洁), Yang Li(李阳), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2016, 25(1): 017401.
[14] First-principles calculations on the elastic and thermodynamic properties of NbN
Ren Da-Hua (任达华), Cheng Xin-Lu (程新路). Chin. Phys. B, 2012, 21(12): 127103.
[15] Thermal and mechanical characterizations of a substrate-free focal plane array
Cheng Teng(程腾), Zhang Qing-Chuan(张青川), Chen Da-Peng(陈大鹏), Shi Hai-Tao(史海涛), Gao Jie(高杰), Qian Jian(钱剑), and Wu Xiao-Ping(伍小平). Chin. Phys. B, 2010, 19(1): 010701.
No Suggested Reading articles found!