Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 068502    DOI: 10.1088/1674-1056/ab888d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure

Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠)
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  A novel N-spiral resonator with open-loop secondary coupling structure (OLSCS) is proposed to realize a compact ultra-narrowband high temperature superconducting (HTS) filter. The coupling strength and polarity between the resonators can be significantly reduced and changed by introducing OLSCS, thus the required weak coupling can be achieved in a very compact size. A six-pole superconducting filter at 1701 MHz with a fractional bandwidth of 0.19% is designed to validate this method. The filter is fabricated on MgO substrate with a compact size of 15 mm×10 mm. The measured insertion loss is 0.79 dB, and the return loss is better than 17.4 dB. The experimental results show a good agreement with the simulations.
Keywords:  bandpass filters      high temperature superconducting (HTS)      microstrip      ultra-narrowband  
Received:  20 January 2020      Revised:  31 March 2020      Accepted manuscript online: 
PACS:  85.25.-j (Superconducting devices)  
Fund: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2014YQ030975).
Corresponding Authors:  Bin Wei, Bisong Cao     E-mail:  weibin@mail.tsinghua.edu.cn;bscao@tsinghua.edu.cn

Cite this article: 

Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠) Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure 2020 Chin. Phys. B 29 068502

[1] Hong J S 2011 Microstrip Filters for RF/Microwave Applications, 2nd edn. (Hoboken: John Wiley & Sons) pp. 28-487
[2] Li S, Huang J, Meng Q, Sun L, Zhang Q, Li F, He A, Zhang X, Li C, Li H and He Y 2007 IEEE Trans. Microwave Theory Techiq. 55 754
[3] Li C, Yu T, Bian Y, Wu Y, Wang J, Zhang X, Sun L, Li H and He Y 2016 IEEE Trans. Appl. Supercond. 26 1
[4] Chunguang L, Qiang Z, Qingduan M, Liang S, Jiandong H, Yunfei W, Xueqiang Z, Aisheng H, Hong L, Yusheng H and Sheng L 2006 Supercond. Sci. Technol. 19 S398
[5] Huang F, Zhou M and Yue L 2006 IEEE Trans. Microwave Theory Techniq. 54 3954
[6] Kawaguchi T, Shiokawa N, Nakayama K, Yamazaki M and Kayano H 2013 International Symposium on Electromagnetic Theory, 20-24 May, 2013, Hiroshima, Japan, p. 234
[7] Kwak J S, Jong Hyun L, Jin Pyo H, Seok Kil H, Wan Sun K and Kook Rin C 2003 IEEE Trans. Appl. Supercond. 13 17
[8] Jin S, Wei B, Cao B, Zhang X, Guo X, Peng H, Piao Y and Gao B 2008 IEEE Microwave Wireless Compon. Lett. 18 395
[9] Peng H, Guo X, Jin S, Piao Y, Zhang X, Wei B, Gao B and Cao B 2009 Microwave Opt. Technol. Lett. 51 141
[10] Lu X, Guo X, Jin S, Zhang X, Peng H, Li M, Wei B and Cao B 2009 IEEE Microwave Wireless Compon. Lett. 19 707
[11] Huang F 2003 IEEE Trans. Microwave Theory Techniq. 51 487
[12] Tao L, Wei B, Guo X and Cao B 2018 Asia-Pacific Microwave Conference (APMC), 6-9 November, 2018, Kyoto, Japan, pp. 1348-1350
[13] Lu X, Guo X, Jin S, Zhang X, Wei B and Cao B 2010 Microwave Opt. Technol. Lett. 52 1647
[14] Tao L, Wei B, Guo X, Cao B and Jiang L 2019 IEEE Trans. Appl. Supercond. 29 1
[15] Zhang Y, Guo X, Chen W, Lu X, Zhang X, Wei B and Cao B 2011 Microwave Opt. Technol. Lett. 53 435
[16] Ma Z W, Kawaguchi T and Kobayashi Y 2005 IEICE Trans. Electron. E88-C 57
[17] Shen Y and Sans C 2003 IEEE MTT-S International Microwave Symposium Digest, 8-13 June, 2003, Philadelphia, PA, USA, p. 1885
[18] García-Lampérez A, Gómez-García R and Salazar-Palma M 2012 IEEE/MTT-S International Microwave Symposium Digest, 17-22 June, 2012, Montreal, QC, Canada, p. 1
[19] Ogbodo E A, Wu Y, Callaghan P and Wang Y 2017 Microwave Opt. Technol. Lett. 59 2385
[20] Jia-Sheng H and Lancaster M J 1996 IEEE Trans. Microwave Theory Techniq. 44 2099
[21] Mezaal Y S, Ali J K and Eyyuboglu H T 2015 Int. J. Electron. 102 1306
[1] Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch
Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟). Chin. Phys. B, 2022, 31(3): 037402.
[2] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[3] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[4] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[5] Compact wide stopband superconducting bandpass filter using modified spiral resonators with interdigital structure
Di Wu(吴荻), Bin Wei(魏斌), Bo Li(李博), Xu-Bo Guo(郭旭波), Xin-Xiang Lu(卢新祥), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068502.
[6] Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas
Yahong Liu(刘亚红), Xiaopeng Zhao(赵晓鹏). Chin. Phys. B, 2018, 27(11): 117805.
[7] Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application
Xiao-Long Fu(付孝龙), Guo-Cheng Wu(吴国成), Wei-Xiong Bai(白渭雄), Guang-Ming Wang(王光明), Jian-Gang Liang(梁建刚). Chin. Phys. B, 2017, 26(2): 024101.
[8] High-temperature superconducting filter using self-embedding asymmetric stepped impedance resonator with wide stopband performance and miniaturized size
Dan Wang(王丹), Bin Wei(魏斌), Yong Heng(衡勇), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(10): 108502.
[9] A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology
Ou-Peng Li(李欧鹏), Yong Zhang(张勇), Rui-Min Xu(徐锐敏), Wei Cheng(程伟), Yuan Wang(王元), Bing Niu(牛斌), Hai-Yan Lu(陆海燕). Chin. Phys. B, 2016, 25(5): 058401.
[10] Nonlinear properties of the lattice network-based nonlinear CRLH transmission lines
Wang Zheng-Bin (王正斌), Wu Zhao-Zhi (吴昭质), Gao Chao (高超). Chin. Phys. B, 2015, 24(2): 028503.
[11] Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST
Du Hong-Lei (杜洪磊), Xue Qian (薛倩), Gao Xiao-Yang (高小洋), Yao Feng-Rui (姚凤蕊), Lu Shi-Yang (卢世阳), Wang Ye-Long (汪业龙), Liu Chun-Heng (刘春恒), Zhang Yong-Cheng (张永成), Lü Yue-Guang (吕跃广), Li Shan-Dong (李山东). Chin. Phys. B, 2015, 24(12): 127704.
[12] A dual-band flexible frequency selective surface with miniaturized elements and maximally flat (Butterworth) response
Wang Xiu-Zhi (王秀芝), Gao Jin-Song (高劲松), Xu Nian-Xi (徐念喜), Liu Hai (刘海). Chin. Phys. B, 2014, 23(4): 047303.
[13] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[14] Composite metamaterial enabled excellent performance of microstrip antenna array
Tang Ming-Chun (唐明春), Xiao Shao-Qiu (肖绍球), Guan Jian (官剑), Bai Yan-Ying (柏艳英), Gao Shan-Shan (高山山), Wang Bing-Zhong (王秉中). Chin. Phys. B, 2010, 19(7): 074214.
No Suggested Reading articles found!