CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic and magnetic properties of BiFeO3 with intrinsic defects:First-principles prediction |
Yang Rui-Peng (杨瑞鹏)a, Lin Si-Xian (林思贤)a, Fang Xiao-Gong (方潇功)a, Qin Ming-Hui (秦明辉)a, Gao Xing-Sen (高兴森)a, Zeng Min (曾敏)a, Liu Jun-Ming (刘俊明)b |
a Institute for Advanced Materials, South China Normal University, Guangzhou 510006, China; b Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract The electronic structure, magnetism, and dielectric functions of BiFeO3 with intrinsic vacancies, including Bi-, Fe-, and O-vacancies (denoted as VFe, VBi, and VO, respectively) are investigated using the first-principles density functional theory plus U calculations. It is revealed that the structural distortions associated with those vacancies impose significant influences on the total density of state and magnetic behaviors. The existence of VBi favors the excitation of the O2p state into the band gap at 0.4 eV, while the O2p and Fe3d orbitals are co-excited into the band gap around 0.45 eV in VFe. Consequently, a giant net magnetic moment of 1.96 uB is generated in VFe, and a relatively small moment of 0.13 uB is induced in VBi, whereas VO seems magnetically inactive. The giant magnetic moment generated in VFe originates from the suppression of the spatially modulated antiferromagnetic spin structure. Furthermore, VFe and VBi have strong influences on dielectric function, and induce some strong peaks to occur in the lower energy level. In contrast, VO has a small effect.
|
Received: 31 October 2013
Revised: 03 December 2013
Accepted manuscript online:
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
77.22.-d
|
(Dielectric properties of solids and liquids)
|
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101063, 51072061, and 51172067) and the Natural Science Foundation of Guangdong Province, China (Grant No. S2011040003205). |
Corresponding Authors:
Zeng Min
E-mail: zengmin@scnu.edu.cn
|
Cite this article:
Yang Rui-Peng (杨瑞鹏), Lin Si-Xian (林思贤), Fang Xiao-Gong (方潇功), Qin Ming-Hui (秦明辉), Gao Xing-Sen (高兴森), Zeng Min (曾敏), Liu Jun-Ming (刘俊明) Electronic and magnetic properties of BiFeO3 with intrinsic defects:First-principles prediction 2014 Chin. Phys. B 23 067102
|
[1] |
Smolenskiǐ G and Chupis I 1982 Sov. Phys. Usp. 25 475
|
[2] |
Wang K F, Liu J M, and Ren Z F 2009 Adv. Phys. 58 321
|
[3] |
Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S, Liu B, Viehland D, Vaithyanathan V, Schlom D and Waghmare U 2003 Science 299 1719
|
[4] |
Catalan G and Scott J F 2009 Adv. Mater. 21 2463
|
[5] |
Zhang S T, Zhang Y, Lu M H, Du C L, Chen Y F, Liu Z G, Zhu Y Y, Ming N B and PanX Q 2006 Appl. Phys. Lett. 88 162901
|
[6] |
Lisenkov S, Kornev I A and Bellaiche L 2009 Phys. Rev. B 79 012101
|
[7] |
Selbach S M, Einarsrud M A, Tybell T and Grande T 2007 J. Am. Ceram. Soc. 90 3430
|
[8] |
Hu Z Q, Li M Y, Yu Y, Liu J, Pei L, Wang J, Liu X L, Yu B F and Zhao X Z 2010 Solid State Commun. 150 1088
|
[9] |
Prosandeev S, Kornev I A and BellaicheL 2011 Phys. Rev. B 83 020102(R)
|
[10] |
Huang F, Lu X, Wang Z, Lin W, Kan Y, Bo H, Cai W and Zhu J 2009 Appl. Phys. A 97 699
|
[11] |
Fischer P, Polomska M, Sosnowska I and Szymanski M 1980 J. Phys. C: Solid State Phys. 13 1931
|
[12] |
Yuan G L, Or S W, Liu J M and Liu Z G 2006 Appl. Phys. Lett. 89 052905
|
[13] |
Gu Y H, Wang Y, Chen F, Chan H W and Chen W P 2010 J. Appl. Phys. 108 094112
|
[14] |
Ederer C and Spaldin N A 2005 Phys. Rev. B 71 224103
|
[15] |
Ju S and Cai T Y 2009 Appl. Phys. Lett. 95 231906
|
[16] |
Lou Y H, Song G L, Chang F G and Wang Z K 2010 Chin. Phys. B 19 077702
|
[17] |
Zhang Z, Wu P, Chen L and Wang J 2010 Appl. Phys. Lett. 96 232906
|
[18] |
Paudel T R, Jaswal S S and Tsymbal E Y 2012 Phys. Rev. B 85 104409
|
[19] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[20] |
Anisimov V I, Aryasetiawan F and Lichtenstein A 1997 J. Phys.: Condens. Matter 9 767
|
[21] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[22] |
Kresse G and Furthnuller J 1996 Phys. Rev. B 54 11169
|
[23] |
Kubel F and Schmid H 1990 Acta Crystallogr. Sect. B: Struct. Sci. 46 698
|
[24] |
Zeng M, Or S W and Chan W H L 2010 J. Appl. Phys. 107 043513
|
[25] |
Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
|
[26] |
Shimada T, Uratani Y and Kitamura T 2012 Appl. Phys. Lett. 100 162901
|
[27] |
Clark S and Robertson J 2007 Appl. Phys. Lett. 90 132903
|
[28] |
Kanai T, Ohkoshi S and Hashimoto K 2003 J. Phys. Chem. Solids 64 391
|
[29] |
Gao F, Yuan Y, Wang K, Chen X, Chen F, Liu J M and Ren Z 2006 Appl. Phys. Lett. 89 102506
|
[30] |
Kim T H, Jeon B C, Min T, Yang S M, Lee D, Kim Y S, Baek S H, Saenrang W, Eom C B and Song T K 2012 Adv. Funct. Mater. 22 4962
|
[31] |
Ihlefeld J, Podraza N, Liu Z, Rai R, Xu X, Heeg T, Chen Y, Li J, Collins R and Musfeldt J 2008 Appl. Phys. Lett. 92 142908
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|