Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048703    DOI: 10.1088/1674-1056/ab7dac
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation

Guobao Feng(封国宝)1, Lu Liu(刘璐)2, Wanzhao Cui(崔万照)1, Fang Wang(王芳)3
1 National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology, Xi'an 710000, China;
2 School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China;
3 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The novel coronavirus pneumonia triggered by COVID-19 is now raging the whole world. As a rapid and reliable killing COVID-19 method in industry, electron beam irradiation can interact with virus molecules and destroy their activity. With the unexpected appearance and quickly spreading of the virus, it is urgently necessary to figure out the mechanism of electron beam irradiation on COVID-19. In this study, we establish a virus structure and molecule model based on the detected gene sequence of Wuhan patient, and calculate irradiated electron interaction with virus atoms via a Monte Carlo simulation that track each elastic and inelastic collision of all electrons. The characteristics of irradiation damage on COVID-19, atoms' ionizations and electron energy losses are calculated and analyzed with regions. We simulate the different situations of incident electron energy for evaluating the influence of incident energy on virus damage. It is found that under the major protecting of an envelope protein layer, the inner RNA suffers the minimal damage. The damage for a ~100-nm-diameter virus molecule is not always enhanced by irradiation energy monotonicity, for COVID-19, the irradiation electron energy of the strongest energy loss damage is 2 keV.
Keywords:  electron beam irradiation      novel coronavirus (COVID-19)      numerical simulation  
Received:  17 February 2020      Revised:  20 February 2020      Accepted manuscript online: 
PACS:  87.15.-v (Biomolecules: structure and physical properties)  
  61.80.Fe (Electron and positron radiation effects)  
  52.65.Pp (Monte Carlo methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61901360).
Corresponding Authors:  Wanzhao Cui     E-mail:  cuiwanzhao@126.com

Cite this article: 

Guobao Feng(封国宝), Lu Liu(刘璐), Wanzhao Cui(崔万照), Fang Wang(王芳) Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation 2020 Chin. Phys. B 29 048703

[1] Guan W J, Ni Z Y, Hu Yu et al. 2020 New Engl. J. Med. (in press)
[2] http://www.nhc.gov.cn/wjw/zxfb/list.shtml
[3] Van E, Terpstra F G and Schuitemaker H 2002 J. Hosp. Infect. 51 121
[4] Nevelsky A, Borzov E and Daniel S 2017 J. Appl. Clin. Med. Phys. 18 196
[5] Jasmin F, Lea B, Thomas G et al. 2013 Viruses 8 319
[6] Smolko E E and Lombardo J H 2005 Nucl. Instrum. Meth. B 236 249
[7] Luchsinger S E, Kropf D H, García-Zepeda C M et al. 2006 J. Food Sci. 61 1000
[8] Lea B, Jasmin F and Sebastian U 2018 Vaccine 36 1561
[9] Sabbaghi A, Miri S M, Keshavarz M et al. 2019 Rev. Med. Virol. 29 2074
[10] https://www.niaid.nih.gov/news-events/novel-coronavirus-sarscov2-images
[11] Brahmakshatriya V, Lupiani B and Brinlee J L 2009 Avian. Pathol. 38 245
[12] Chandni P, Brooke A D and David H K 2013 Appl. Environ. Microb. 79 3796
[13] Tanja S, Arnd T H and Uwe G 2012 Transfus. Med. Hemoth. 39 29
[14] Zhang T, Li Z and Tao J 2013 Chin. Animal Health Inspection 30 52 (in Chinese)
[15] Xu X T, Chen P and Wang J F, Feng J N, Zhou H, Li X, Zhong W and Hao P 2020 Sci. Chin. Life Sci. 63 457
[16] Xu Z J, Peng C and Shi Y L 2020 Sci. Chin. Life Sci. (in press)
[17] Lu R J, Zhao X and Li J 2020 Lancet 395 565
[18] Malik Y S, Sircar S and Bhat S 2020 Vet. Quart. 40 68
[19] https://www.pptaglobal.org/media-and-information/ppta-statements/ 1055-2019-novel-coronavirus-2019-ncov-and-plasma-protein-therapies
[20] https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2/
[21] https://www.ncbi.nlm.nih.gov/nuccore/MN908947
[22] Feng G B, Cui W Z and Zhang N 2017 Chin. Phys. B 26 097901
[23] Feng G B, Liu L and Cui W Z 2019 IEEE Trans. Plas. Sci. 47 3783
[24] Feng G B, Wang F and Hu T C 2015 Chin. Phys. B 24 117901
[25] Chang C, Tang C X and Wu J H 2013 Phys. Rev. Lett. 110 064802
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!