Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038202    DOI: 10.1088/1674-1056/ab7186
Special Issue: SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale
Prev   Next  

Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials

Yu-Qi Wang(王宇琦)1,2, Xiao-Rui Sun(孙晓瑞)1,2, Rui-Juan Xiao(肖睿娟)1,2, Li-Quan Chen(陈立泉)1,2
1 Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  In all-solid-state lithium batteries, the impedance at the cathode/electrolyte interface shows close relationship with the cycle performance. Cathode coatings are helpful to reduce the impedance and increase the stability at the interface effectively. LiTi2(PO4)3 (LTP), a fast ion conductor with high ionic conductivity approaching 10-3 S·cm-1, is adopted as the coating materials in this study. The crystal and electronic structures, as well as the Li+ ion migration properties are evaluated for LTP and its doped derivatives based on density functional theory (DFT) and bond valence (BV) method. Substituting part of Ti sites with element Mn, Fe, or Mg in LTP can improve the electronic conductivity of LTP while does not decrease its high ionic conductivity. In this way, the coating materials with both high ionic conductivities and electronic conductivities can be prepared for all-solid-state lithium batteries to improve the ion and electron transport properties at the interface.
Keywords:  lithium battery materials      high-throughput calculations      density functional theory      virtual screening  
Received:  29 November 2019      Revised:  15 January 2020      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries) (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51772321), and the National Key R&D Program of China (Grant No. 2017YFB0701602), and the Youth Innovation Promotion Association, China (Grant No. 2016005). The Shanghai Supercomputer Center provided the computing resources.
Corresponding Authors:  Rui-Juan Xiao     E-mail:

Cite this article: 

Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉) Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials 2020 Chin. Phys. B 29 038202

[1] Etacheri V, Marom R, Elazari R, Salitra G and Aurbach D 2011 Energy & Environ. Sci. 4 3243
[2] Poizot P and Dolhem F 2011 Energy & Environ. Sci. 4 2003
[3] Jacobson M Z and Delucchi M A 2011 Ene. Policy 39 1154
[4] Mizushima K, Jones P C, Wiseman P J and Goodenough J B 1980 Mater. Res. Bull. 15 783
[5] Li H, Wang Z, Chen L and Huang X 2009 Adv. Mater. 21 4593
[6] Yao X Y, Liu D, Wang C S, Long P, Peng G, Hu Y S, Hu Y S, Li H, Chen L Q and Xu X X 2016 Nano Lett. 16 7148
[7] Xiao Y, Miara L J, Wang Y and Ceder G 2019 Joule 3 1
[8] Wang Q Y, Wang S, Zhang J N, Zheng J Y, Yu X Q and Li H 2017 Energy Storage Science and Technology 6 1008
[9] He Y, Yu X Q, Wang Y H, Li H and Huang X J 2011 Adv. Mater. 23 4938
[10] Aatiq A, Ménétrier M, Croguennec L, Suardc E and Delmas C 2002 J. Mater. Chem. 12 2971
[11] Lu X, Wang S H, Xiao R J, Shi S Q, Li H and Chen L Q 2017 Nano Energy 41 626
[12] Takada K, Tansho M, Yanase I, Inada T and Kajiyama A 2001 Solid State Ionics 139 241
[13] Chen Z, Qin Y, Amine K and Sun Y K 2010 J. Mater. Chem. 20 7606
[14] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[15] Adams S and Rao R P 2011 Phys. Status Solidi A 208 1746
[16] Xiao R J, Li H and Chen L Q 2015 Sci. Rep. 5 14227
[17] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[18] Blochl P E 1994 Phys. Rev. B 50 17953
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!