Special Issue:
TOPICAL REVIEW — Strong-field atomic and molecular physics
|
TOPICAL REVIEW—Strong-field atomic and molecular physics |
Prev
Next
|
|
|
Bohmian trajectory perspective on strong field atomic processes |
Xuan-Yang Lai(赖炫扬), Xiao-Jun Liu(柳晓军) |
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China |
|
|
Abstract The interaction of an atom with an intense laser field provides an important approach to explore the ultrafast electron dynamics and extract the information of the atomic and molecular structures with unprecedented attosecond temporal and angstrom spatial resolution. To well understand the strong field atomic processes, numerous theoretical methods have been developed, including solving the time-dependent Schrödinger equation (TDSE), classical and semiclassical trajectory method, quantum S-matrix theory within the strong-field approximation, etc. Recently, an alternative and complementary quantum approach, called Bohmian trajectory theory, has been successfully used in the strong-field atomic physics and an exciting progress has been achieved in the study of strong-field phenomena. In this paper, we provide an overview of the Bohmian trajectory method and its perspective on two strong field atomic processes, i.e., atomic and molecular ionization and high-order harmonic generation, respectively.
|
Received: 29 July 2019
Revised: 06 November 2019
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
32.80.Wr
|
(Other multiphoton processes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11922413, 11834015, 11874392, 11804374, 11847243, and 11774387) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21010400). |
Corresponding Authors:
Xuan-Yang Lai
E-mail: xylai@wipm.ac.cn
|
Cite this article:
Xuan-Yang Lai(赖炫扬), Xiao-Jun Liu(柳晓军) Bohmian trajectory perspective on strong field atomic processes 2020 Chin. Phys. B 29 013205
|
[1] |
Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
|
[2] |
Schafer K J, Yang B R, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599
|
[3] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[4] |
Paulus G G, Nicklich W, Xu H, Lambropoulos P and Walther H 1994 Phys. Rev. Lett. 72 2851
|
[5] |
Ferray M, L'Huillier A, Li X F, Lompré L A, Mainfray G and Manus C 1988 J. Phys. B 21 L31
|
[6] |
Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535
|
[7] |
Agostini P and DiMauro L F 2004 Rep. Prog. Phys. 67 813
|
[8] |
Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227
|
[9] |
Becker A, Dörner R and Moshammer R 2005 J. Phys. B 38 S753
|
[10] |
Becker W, Liu X, Ho P J and Eberly J H 2012 Rev. Mod. Phys. 84 1011
|
[11] |
de Morisson Faria C F and Liu X 2011 J. Mod. Opt. 58 1076
|
[12] |
Spielmann Ch, Burnett N H, Sartania S, Kopptisch R, Schnürrer M, Kan C, Lenzner M, Wobrauschek P and Krausz F 1997 Science 278 661
|
[13] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[14] |
Blaga C I, Xu J L, DiChiara A D, Sistrunk E, Zhang K K, Agostini P, Miller T A, DiMauro L F and Lin C D 2012 Nature 483 194
|
[15] |
Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve D M and Corkum P B 2008 Science 320 1478
|
[16] |
Sun R P, Lai X Y, Yu S G, Wang Y L, Xu S P, Quan W and Liu X J 2019 Phys. Rev. Lett. 122 193202
|
[17] |
Quan W, Hao X L, Hu X Q, Sun R P, Wang Y L, Chen Y J, Yu S G, Xu S P, Xiao Z L, Lai X Y, Li X Y, Becker W, Wu Y, Wang J G, Liu X J and Chen J 2017 Phys. Rev. Lett. 119 243203
|
[18] |
Hao X L, Chen J, Li W D, Wang B B, Wang X D and Becker W 2014 Phys. Rev. Lett. 112 073002
|
[19] |
Maxwell A S and Figueira de Morisson Faria C 2016 Phys. Rev. Lett. 116 143001
|
[20] |
Javanainen J, Eberly J H and Su Q C 1988 Phys. Rev. A 38 3430
|
[21] |
Grobe R and Eberly J H 1993 Phys. Rev. A 48 4664
|
[22] |
Hu B, Liu J and Chen S G 1997 Phys. Lett. A 236 533
|
[23] |
Chen J, Liu J and Chen S G 2000 Phys. Rev. A 61 033402
|
[24] |
Chen J, Liu J and Zheng W M 2002 Phys. Rev. A 66 043410
|
[25] |
Ye D F, Liu X and Liu J 2008 Phys. Rev. Lett. 101 233003
|
[26] |
Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G and Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35
|
[27] |
Milošević D B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B 39 R203
|
[28] |
Figueira de Morisson Faria C, Schomerus H and Becker W 2002 Phys. Rev. A 66 043413
|
[29] |
Keldysh L V 1964 Zh. Eksp. Teor. Fiz. 47 1945 [1965 Sov. Phys. JETP 20 1307]
|
[30] |
Faisal F H M 1973 J. Phys. B 6 L89
|
[31] |
Reiss H R 1980 Phys. Rev. A 22 1786
|
[32] |
Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P and Dimauro L F 2009 Nat. Phys. 5 335
|
[33] |
Huismans Y, et al. 2011 Science 331 61
|
[34] |
Huismans Y, et al. 2012 Phys. Rev. Lett. 109 013002
|
[35] |
Lai X Y, Yu S G, Huang Y Y, Hua L Q, Gong C, Quan W, de Morisson Faria C F and Liu X J 2017 Phys. Rev. A 96 013414
|
[36] |
Maxwell A S, Al-Jawahiry A, Das T and de Morisson Faria C F 2017 Phys. Rev. A 96 023420
|
[37] |
Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y and Xu Z Z 2009 Phys. Rev. Lett. 103 093001
|
[38] |
Wang Y L, Yu S G, Lai X Y, Kang H P, Xu S P, Sun R P, Quan W and Liu X J 2018 Phys. Rev. A 98 043422
|
[39] |
Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M Y, Liu X, Hao X L, Li W D, He X T and Chen J 2012 Phys. Rev. Lett. 109 043001
|
[40] |
Li M, Geng J W, Liu H, Deng Y, Wu C, Peng L Y, Gong Q and Liu Y 2014 Phys. Rev. Lett. 112 113002
|
[41] |
Paulus G G, Grasbon F, Walther H, Kopold R and Becker W 2001 Phys. Rev. A 64 021401
|
[42] |
Cornaggia C 2010 Phys. Rev. A 82 053410
|
[43] |
Quan W, Lai X Y, Chen Y J, et al. 2013 Phys. Rev. A 88 021401
|
[44] |
Quan W, Lai X Y, Chen Y J, et al. 2014 Chin. J. Phys. 52 389
|
[45] |
Wang C, Tian Y, Luo S, et al. 2014 Phys. Rev. A 90 023405
|
[46] |
L'Huillier A, Schafer K J and Kulander K C 1991 J. Phys. B 24 3315
|
[47] |
Xiong W H, Geng J W, Tang J Y, Peng L Y and Gong Q H 2014 Phys. Rev. Lett. 112 233001
|
[48] |
Li P C, Sheu Y L, Laughlin C and Chu S I 2014 Phys. Rev. A 90 041401
|
[49] |
Nubbemeyer T, Gorling K, Saenz A, Eichmann U and Sandner W 2008 Phys. Rev. Lett. 101 233001
|
[50] |
Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H and Sandner W 2009 Phys. Rev. Lett. 102 113002
|
[51] |
Eichmann U, Saenz A, Eilzer S, Nubbemeyer T and Sandner W 2013 Phys. Rev. Lett. 110 203002
|
[52] |
Zimmermann H, Buller J, Eilzer S and Eichmann U 2015 Phys. Rev. Lett. 114 123003
|
[53] |
Zimmermann H, Patchkovskii S, Ivanov M and Eichmann U 2017 Phys. Rev. Lett. 118 013003
|
[54] |
Bohm D 1952 Phys. Rev. 85 16
|
[55] |
Bohm D 1952 Phys. Rev. 85 180
|
[56] |
Holland P R 1993 The Quantum Theory of Motion (Cambridge: Cambridge University Press)
|
[57] |
Sanz Ángel S and Miret-Artés S 2013 A Trajectory Description of Quantum Processes. I. Fundamentals (New York: Springer), Vol. 850; A Trajectory Description of Quantum Processes. II. Applications (New York: Springer), Vol. 831
|
[58] |
Oriols X and Mompart J 2011 Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology (Singapore: Pan Stanford Publishing)
|
[59] |
Wyatt R E 2005 Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (New York and Heidelberg, Interdisciplinary Applied Mathematics, Springer)
|
[60] |
Benseny A, Albareda G, Sanz A S, Mompart J and Oriols X 2014 Eur. Phys. J. D 68 286
|
[61] |
Benseny A, Bagudá J, Oriols X and Mompart J 2012 Phys. Rev. A 85 053619
|
[62] |
Lopreore C L and Wyatt R E 1999 Phys. Rev. Lett. 82 5190
|
[63] |
Albareda G, Marian D, Benali A, Yaro S, Zanghł N and Oriols X 2013 J. Comput. Electron. 12 405
|
[64] |
Dürr D, Goldstein S, Tumulka R and Zanghł N 2004 Phys. Rev. Lett. 93 090402
|
[65] |
Pinto-Neto N 2005 Found. Phys. 35 577
|
[66] |
He D S, Gao D F and Cai Q Y 2014 Phys. Rev. D 89 083510
|
[67] |
Wang B B 2008 Chin. Phys. B 17 2817
|
[68] |
Bian X B and Bandrauk A D 2012 Phys. Rev. Lett. 108 263003
|
[69] |
Zhou Y M, Tolstikhin O I and Morishita T 2016 Phys. Rev. Lett. 116 173001
|
[70] |
Walt S G, Ram N B, Atala M, Shvetsov-Shilovski N I, Von Conta A, Baykusheva D, Lein M and Wörner H J 2017 Nat. Commun. 8 15651
|
[71] |
He M R, Li Y, Zhou Y M, Li M, Cao W and Lu P X 2018 Phys. Rev. Lett. 120 133204
|
[72] |
Meckel M, Comtois D, Zeidler D, Staudte A, Pavičić D, Bandulet H C, Pépin H, Kieffer J C, Dörner R, Villeneuve1 D M and Corkum P B 2008 Science 320 1478
|
[73] |
Xu J, Blaga C I, Zhang K, Lai Y H, Lin C D, Miller T A, Agostini P and DiMauro L F 2014 Nat. Commun. 5 4635
|
[74] |
Wei S S, Li S Y, Guo F M, Yang Y J and Wang B B 2013 Phys. Rev. A 87 063418
|
[75] |
Jooya H Z, Telnov D A, Li P C and Chu S I 2015 Phys. Rev. A 91 063412
|
[76] |
Douguet N and Bartschat K 2018 Phys. Rev. A 97 013402
|
[77] |
Ivanov I A, Nam C H and Kim K T 2017 Sci. Rep. 7 39919
|
[78] |
Takemotoa N and Becker A 2011 J. Chem. Phys. 134 074309
|
[79] |
Sawada R, Sato T and Ishikawa K L 2014 Phys. Rev. A 90 023404
|
[80] |
Xu L and He F 2019 J. Opt. Soc. Am. B 36 840
|
[81] |
Lai X Y, Cai Q Y and Zhan M S 2009 Eur. Phys. J. D 53 393
|
[82] |
Song Y, Yang Y J, Guo F M and Li S Y 2017 J. Phys. B 50 095003
|
[83] |
Botheron P and Pons B 2010 Phys. Rev. A 82 021404
|
[84] |
Cruz-Rodriguez L, Uranga-Pina L, Martinez-Mesa A and Meier C 2019 Chem. Phys. Lett. 715 211
|
[85] |
Lai X Y, Cai Q Y and Zhan M S 2009 New J. Phys. 11 113035
|
[86] |
Ni H C, Saalmann U and Rost J M 2018 Phys. Rev. A 97 013426
|
[87] |
Jooya H Z, Telnov D A and Chu S I 2015 Phys. Rev. A 93 063405
|
[88] |
Li P C, Sheu Y L, Jooya H Z, Zhou X X and Chu S I 2016 Sci. Rep. 6 32763
|
[89] |
Christov I P 2006 Opt. Express 14 6906
|
[90] |
Christov I P 2019 Appl. Phys. B 125 209
|
[91] |
Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
|
[92] |
Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Keiffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
|
[93] |
Lai X Y, Cai Q Y and Zhan M S 2010 Chin. Phys. B 19 020302
|
[94] |
Song Y, Guo F M, Li S Y, Chen J G, Zeng S L and Yang Y J 2012 Phys. Rev. A 86 033424
|
[95] |
Song Y, Li S Y, Liu X S, Guo F M and Yang Y J 2013 Phys. Rev. A 88 053419
|
[96] |
Wu J, Augstein B B and Figueira de Morisson Faria C 2013 Phys. Rev. A 88 023415
|
[97] |
Wu J, Augstein B B and Figueira de Morisson Faria C 2013 Phys. Rev. A 88 063416
|
[98] |
Huang Y Y, Lai X Y and Liu X J 2018 Chin. Phys. B 27 073204
|
[99] |
Jooya H Z, Telnov D A, Li P C and Chu S I 2015 J. Phys. B 48 195401
|
[100] |
Wang J, Wang B B, Guo F M, Li S Y, Ding D J, Chen J G, Zeng S L and Yang Y J 2014 Chin. Phys. B 23 053201
|
[101] |
Morishita Y, Liu X J, Saito N, Lischke T, Kato M, Prümper G, Oura M, Yamaoka H, Tamenori Y, Suzuki I H and Ueda K 2006 Phys. Rev. Lett. 96 243402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|