Abstract Organo-halide perovskites in planar heterojunction architecture have shown considerable promise as efficient light harvesters in solar cells. We carry out a numerical modeling of a planar lead based perovskite solar cell (PSC) with Cu2ZnSnS4 (CZTS) as the hole transporting material (HTM) using the one-dimensional solar cell capacitance simulator (SCAPS-1D). The effects of numerous parameters such as defect density, thickness, and doping density of the absorber layer on the device performance are investigated. The doping densities and electron affinities of the electron transporting material (ETM) and the HTM are also varied to optimize the PSC performance. It has been observed that a thinner absorber layer of~220 nm with a defect density of 1014 cm-3 compared to the reference structure improves the device performance. When doping density of the absorber layer increases beyond 2×1016 cm-3, the power conversion efficiency (PCE) reduces due to enhanced recombination rate. The defect density at the absorber/ETM interface reduces the PCE as well. Considering a series resistance of 5 Ω·cm2 and all the optimum parameters of absorber, ETM and HTM layers simultaneously, the overall PCE of the device increases significantly. In comparison with the reference structure, the PCE of the optimized device has been increased from 12.76% to 22.7%, and hence the optimized CZTS based PSC is highly efficient.
Jiang M, Niu Q, Tang X, Zhang H, Xu H, Huang W, Yao J, Yan B and Xia R 2019 Polymers 11 147
[39]
Sap J A, Isabella O, Jager K and Zeman M 2011 Thin Solid Films 520 1096
[6]
Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[40]
Ng A, Ren Z, Shen Q, Cheung S H, Gokkaya H C, So S K, Djurisic A B, Wan Y, Wu X and Surya C 2016 ACS Appl. Mater. Interfaces 8 32805
[7]
Fakharuddin A, De Rossi F, Watson T M, Schmidt-Mende L and Jose R 2016 APL Mater. 4 091505
[41]
Zhou Y and Long G 2017 J. Phys. Chem. C 121 1455
[8]
Werner J, Niesen B and Ballif C 2018 Adv. Mater. Interfaces 5 1700731
[42]
Baloch A A, Hossain M I, Tabet N and Alharbi F H 2018 J. Phys. Chem. Lett. 9 426
[9]
Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764
[43]
Tavakoli M M, Gu L, Gao Y, Reckmeier C, He J, Rogach A L, Yao Y and Fan Z 2015 Sci. Rep. 5 14083
[10]
Baltakesmez A, Biber M and Tüzemena S 2018 J. Radiat. Res. App. Scis 11 124
[44]
Lim K G, Ahn S, Kim Y H, Qi Y and Lee T W 2016 Energy Environ. Sci. 9 932
[11]
Kim Y, Jung E H, Kim G, Kim D, Kim B J and Seo J 2018 J. Adv. Energy Mater. 8 1801668
[45]
Thakur U, Kisslinger R and Shankar K 1996 Nano Mater. 7 95
[12]
Nia N Y, Matteocci F, Cina L and Carlo A D 2017 ChemSusChem. 10 3854
[46]
Jiang C S, Yang M, Zhou Y, To B, Nanayakkara S U, Luther J M, Zhou W, Berry J J, Van De Lagemaat J, Padture N P, Zhu K and Al-Jassim M M 2015 Nat. Commun. 6 8397
[13]
Wang Y, Hu Y, Han D, Yuan Q, Caoc T, Chen N, Zhou D, Cong H and Feng L 2019 Org. Electron. 70 63
[47]
Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H and Seo J 2019 Nature 567 511
[14]
Jena A K, Numata Y, Ikegami M and Miyasaka T 2018 J. Mater. Chem. A 6 2219
[48]
Ravindiran M and Praveenkumar C 2018 Renew. Sustain. Energy Rev. 94 317
[15]
Ava T, Al-Mamun A, Marsillac S and Namkoong G 2019 Appl. Sci. 9 188
[49]
Zhang X, Fu E, Wang Y and Zhang C 2019 Nanomaterials 9 336
[16]
Hu L, Li M, Yang K, Xiong Z, Yang B, Wang M, Tang X, Zang Z, Liu X, Li B, Xiao Z, Lu S, Gong H, Ouyang J and Sun K 2018 J. Mater. Chem. A 6 16583
[17]
Heo J H, Han H J, Lee M, Song M, Kim D H and Im S H 2015 Energy Environ. Sci. 8 2922
[18]
Zhou P, Bu T, Shi S, Li L, Zhang Y, Ku Z, Peng Y, Zhong J, Cheng Y B and Huang F 2018 J. Mater. Chem. C 6 5733
[19]
Ye S, Sun W, Li Y, Yan W, Peng H, Bian Z, Lui Z and Huang C 2015 Nano Lett. 15 3723
[20]
Zuo C and Ding L 2015 Small 11 5528
[21]
Patel S B, Patel A H and Gohel J V 2018 Cryst. Eng. Comm. 20 7677
[22]
Li X, Yang J, Jiang Q, Chu W, Zhang D, Zhou Z and Xin J 2017 ACS Appl. Mater. Interfaces 9 41354
[23]
Xu L, Deng L L, Cao J, Wang X, Chen W Y and Jiang Z 2017 Nanoscale Res. Lett. 12 159
[24]
Yang S, Fu W, Zhang Z, Chen H and Li C Z 2017 J. Mater. Chem. A 5 11462
[25]
Wu Q, Xue C, Li Y, Zhou P, Liu W, Zhu J, Dai S, Zhu C and Yang S 2015 ACS Appl. Mater. Interfaces 7 28466
[26]
Zuo Y, Chen L, Jiang W, Liu B, Zeng C, Li M and Shi X 2018 Mater. Tehno. 52 483
[27]
Mahmood K, Sarwar S and Mehran M 2017 RSC Adv. 7 17044
[28]
Wang R, Mujahid M, Duan Y, Wang Z K, Xue J and Yang Y 2019 Adv. Funct. Mater. 1808843
[29]
Burgelman M, Decock K, Khelifi S and Abass A 2013 Thin Solid Films 535 296
[30]
Kabir I, Sadik F and Mahmood S A 2018 10th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh 20-22 December 2018, p. 145
[31]
Chouhan A S, Jasti N P and Avasthi S 2018 Mater. Lett. 221 150
[32]
Tan K, Lin P, Wang G, Liu Y, Xu Z and Lin Y 2016 Solid State Electron. 126 75
[33]
Li H, Yang Y, Feng X, Shen K, Li H, Li J, Jiang Z and Song F 2016 Nanomater Nanotechnol. 6 24
[34]
Herz L M 2017 ACS Energy Lett. 2 1539
[35]
Chihi A, Boujmil M F and Bessais B 2017 J. Electron. Mater. 46 5270
[36]
Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J and Guha S 2013 Prog. Photovolt: Res. Appl. 21 72
[37]
Wanda M D, Ouédraogo S, Tchoffo F, Zougmoré F and Ndjaka J M B 2016 Int. J. Photoenergy 1
Sap J A, Isabella O, Jager K and Zeman M 2011 Thin Solid Films 520 1096
[40]
Ng A, Ren Z, Shen Q, Cheung S H, Gokkaya H C, So S K, Djurisic A B, Wan Y, Wu X and Surya C 2016 ACS Appl. Mater. Interfaces 8 32805
[41]
Zhou Y and Long G 2017 J. Phys. Chem. C 121 1455
[42]
Baloch A A, Hossain M I, Tabet N and Alharbi F H 2018 J. Phys. Chem. Lett. 9 426
[43]
Tavakoli M M, Gu L, Gao Y, Reckmeier C, He J, Rogach A L, Yao Y and Fan Z 2015 Sci. Rep. 5 14083
[44]
Lim K G, Ahn S, Kim Y H, Qi Y and Lee T W 2016 Energy Environ. Sci. 9 932
[45]
Thakur U, Kisslinger R and Shankar K 1996 Nano Mater. 7 95
[46]
Jiang C S, Yang M, Zhou Y, To B, Nanayakkara S U, Luther J M, Zhou W, Berry J J, Van De Lagemaat J, Padture N P, Zhu K and Al-Jassim M M 2015 Nat. Commun. 6 8397
[47]
Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H and Seo J 2019 Nature 567 511
[48]
Ravindiran M and Praveenkumar C 2018 Renew. Sustain. Energy Rev. 94 317
[49]
Zhang X, Fu E, Wang Y and Zhang C 2019 Nanomaterials 9 336
Enhanced absorption process in the thin active region of GaAs based p-i-n structure Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097803.
[3]
Origin of anomalous enhancement of the absorption coefficient in a PN junction Xiansheng Tang(唐先胜), Baoan Sun(孙保安), Chen Yue(岳琛), Xinxin Li(李欣欣), Junyang Zhang(张珺玚), Zhen Deng(邓震), Chunhua Du(杜春花), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Yang Jiang(江洋), Weihua Wang(汪卫华), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097804.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.