Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 085201    DOI: 10.1088/1674-1056/19/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Experimental studies of plasma sheath near meshes of different transmissivity

Li Yi-Ren(李毅人), Ma Jin-Xiu(马锦秀)†ger, Zheng Yao-Bang(郑尧邦), and Zhang Wen-Gui(张文贵)
Key Laboratory of Basic Plasma Physics and Center for Magnetic Fusion Theory, Chinese Academy of Sciences, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The measurements of the potential distributions in the boundary layer near meshes with different mesh spacing were conducted in weakly collisional plasmas using a fine-structured emissive probe and the results of the sheath thickness and electric field at the sheath-presheath edge were compared with theoretical models of collisional presheath and collisionless sheath. It was shown that, because the meshes are partially transparent to ions, the sheath is thinner and the electric field is stronger for the mesh of higher transmissivity, owing to the increased ion density in the sheath contributed from the ions transmitted from the other side of the mesh. However, the potential profiles in the presheath remain almost the same for different meshes except for the shift of the sheath-presheath edge. The thickness of the sheath decreases while the electric field at the edge increases with the increase of the neutral gas pressure. Furthermore, depending on the pressure, the measured electric fields at the edge are close to that from the models of a transition region.
Keywords:  plasma sheath      presheath      mesh      emissive probe  
Received:  25 December 2009      Revised:  05 February 2010      Accepted manuscript online: 
PACS:  52.40.Kh (Plasma sheaths)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.70.Ds (Electric and magnetic measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875121 and 40831062), partially by CAS Knowledge Innovation Program (Grant No. kjcx2-yw-n28), and the National Basic Research Program of China (Grant Nos. 2008CB717800 and 2009GB105001).

Cite this article: 

Li Yi-Ren(李毅人), Ma Jin-Xiu(马锦秀), Zheng Yao-Bang(郑尧邦), and Zhang Wen-Gui(张文贵) Experimental studies of plasma sheath near meshes of different transmissivity 2010 Chin. Phys. B 19 085201

[1] Tonks L and Langmuir I 1929 Phys. Rev. 34 876
[2] Hershkowitz N 2005 Phys. Plasmas 12 055502
[3] Allen J E 2009 Plasma Sources Sci. Technol. 18 014004
[4] Franklin R N 2003 J. Phys. D 36 R309
[5] Riemann K U 1991 J. Phys. D 24 493
[6] Riemann K U 1997 Phys. Plasmas 4 4158
[7] Yu M Y, Saleem H and Luo H 1992 Phys. Fluids B 4 3427
[8] Ma J X, Liu J Y and Yu M Y 1997 Phys. Rev. E 55 4627
[9] Dai Z L, Wang Y N and Ma T C 2001 Acta Phys. Sin. 50 2398 (in Chinese)
[10] Liu J Y, Wang Z X and Wang X 2003 Phys. Plasmas 10 3032
[11] Wang Z X, Liu J Y, Zou X, Liu Y and Wang X G 2004 Acta Phys. Sin. 53 793 (in Chinese)
[12] Zou X, Liu J Y, Wang Z X, Gong Y, Liu Y and Wang X G 2004 Acta Phys. Sin. 53 3409 (in Chinese)
[13] Wang J L, Zhang G L, Liu Y F, Wang Y N, Liu C Z and Yang S Z 2004 Chin. Phys. 13 65
[14] Li Y F and Ma J X 2006 Phys. Plasmas 13 013501
[15] Duan P, Liu J Y, Gong Y, Zhang Y, Liu Y and Wang X G 2007 Acta Phys. Sin. 56 7090 (in Chinese)
[16] Zou X, Liu H P and Gu X E 2008 Acta Phys. Sin. 57 5111 (in Chinese)
[17] Liu C S, Wang D Z, Liu T W and Wang Y H 2008 Acta Phys. Sin. 57 6450 (in Chinese)
[18] Wang D Y, Ma J X, Li Y R and Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese)
[19] Yu D, Zhang F, Liu H, Li H, Yan G and Liu J 2008 Phys. Plasmas 15 104501
[20] Gong Y, Wang X, Duan P, Yu J and Wang D 2005 Phys. Plasmas 12 043501
[21] Dai Z L, Xu X and Wang Y N 2007 Phys. Plasmas 14 013507
[22] Godyak V and Sternberg N 2002 Phys. Plasmas 9 4427
[23] Hutchinson I H 2002 Phys. Plasmas 9 1832
[24] Franklin R N and Snell J 2001 Phys. Plasmas 8 643
[25] Franklin R N 2004 J. Phys. D 37 1342
[26] Benilov M S 2000 IEEE Trans. Plasma Sci. 28 2207
[27] Kono A 2003 Phys. Plasmas 10 4181
[28] Lonngren K E and Alexeff I 2008 Phys. Plasmas 15 093505
[29] Bohm D 1949 The Characteristics of Electrical Discharges in Magnetic Fields ed. Guthrie A and Wakerling R K(New York: McGraw-Hill) p. 77
[30] Goeckner M J, Goree J and Sheridan T E 1992 Phys. Flu-ids B 4 1663
[31] Oksuz L, Khedr M A and Hershkowitz N 2001 Phys. Plas-mas 8 1729
[32] Severn G D,Wang X, Ko E and Hershkowitz N 2003 Phys. Rev. Lett. 90 145001
[33] Oksuz L and Hershkowitz N 2002 Phys. Rev. Lett. 89 145001
[34] Crawford F W and Cannara A B 1965 J. Appl. Phys. 36 3135
[35] Goldan P D 1970 Phys. Fluids 13 1055
[36] Annaratone B M, Antonova T, Thomas H M and Morfill G E 2004 Phys. Rev. Lett. 93 185001
[37] Lonngren K E, Khazei M, Gabl E F and Bulson J M 1982 Plasma Phys. 24 1483
[38] Klostermann H, Rohde A and Piel A 1997 Phys. Plasmas 4 2406
[39] Nakamura Y, Bailung H and Lonngren K E 1999 Phys. Plasmas 6 3466
[40] Li Y F, Ma J X, Li Y R, Xiao D L and Lonngren K E 2006 Phys. Lett. A 358 297
[41] Xiao D L, Ma J X, Li Y R, Li Y F and Yu M Y 2007 Phys. Plasmas 14 092104
[42] Li Y R, Ma J X, Wang D Y and Zhang W G 2008 J. Phys. D 41 225210
[43] Ma J X, Li Y F, Xiao D L, Li J J and Li Y R 2005 Rev. Sci. Instrum. 76 062205
[44] Smith J R, Hershkowitz N and Coakley P 1979 Rev. Sci. Instrum. 50 210
[45] Wang X and Hershkowitz N 2006 Rev. Sci. Instrum. 77 043507
[46] Sheldon J W 1962 Phys. Rev. Lett. 8 64
[47] Raizer Y P 1997 Gas Discharge Physics (Berlin: Springer) p. 53
[1] Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation
Jing-Wei Sun(孙竟巍), Xu Qian(钱旭), Hong Zhang(张弘), and Song-He Song(宋松和). Chin. Phys. B, 2021, 30(7): 070201.
[2] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[3] Two-dimensional finite element mesh generation algorithm for electromagnetic field calculation
Chun-Feng Zhang(章春锋), Wei Wang(汪伟), Si-Guang An(安斯光), and Nan-Ying Shentu(申屠南瑛). Chin. Phys. B, 2021, 30(1): 010101.
[4] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[5] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[6] Light propagation characteristics of turbulent plasma sheath surrounding the hypersonic aerocraft
Chunjing Lv(吕春静), Zhiwei Cui(崔志伟), Yiping Han(韩一平). Chin. Phys. B, 2019, 28(7): 074203.
[7] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[8] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[9] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[10] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[11] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[12] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[13] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[14] Effect of persistent high intraocular pressure on microstructure and hydraulic permeability of trabecular meshwork
Mei Xi (梅曦), Ren Lin (任琳), Xu Qiang (许强), Zheng Wei (郑炜), Liu Zhi-Cheng (刘志成). Chin. Phys. B, 2015, 24(5): 058701.
[15] Infrared transparent frequency selective surface based on iterative metallic meshes
Yu Miao (于淼), Xu Nian-Xi (徐念喜), Gao Jin-Song (高劲松). Chin. Phys. B, 2015, 24(3): 030701.
No Suggested Reading articles found!