Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 110202    DOI: 10.1088/1674-1056/ab4d47
GENERAL Prev   Next  

Resonant multiple wave solutions to some integrable soliton equations

Jian-Gen Liu(刘建根)1,2, Xiao-Jun Yang(杨小军)1,2,3, Yi-Ying Feng(冯忆颖)2,3
1 School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China;
2 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China;
3 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract  To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation, the (3+1)-dimensional generalized Kadomtsev-Petviashvili (g-KP) equation, and the B-type Kadomtsev-Petviashvili (BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.
Keywords:  linear superposition principle      resonant multiple wave solutions      (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation      (3+1)-dimensional g-KP and BKP equations  
Received:  21 August 2019      Revised:  18 September 2019      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Wz (Symbolic computation (computer algebra))  
Fund: Project supported by the Yue-Qi Scholar of the China University of Mining and Technology (Grant No. 102504180004) and the 333 Project of Jiangsu Province, China (Grant No. BRA2018320).
Corresponding Authors:  Xiao-Jun Yang     E-mail:  xjyang@cumt.edu.cn

Cite this article: 

Jian-Gen Liu(刘建根), Xiao-Jun Yang(杨小军), Yi-Ying Feng(冯忆颖) Resonant multiple wave solutions to some integrable soliton equations 2019 Chin. Phys. B 28 110202

[1] Hietarinta J 2005 Phys. AUC 15 31
[2] Jin M Z and Yao M Z 2011 Chin. Phys. B 20 010205
[3] Zhang Y F and Ma W X 2015 Appl. Math. Comput. 256 252
[4] Zhang Y F and Ma W X 2015 Z. Natur. A 70 263
[5] Ma W X, Huang T and Zhang Y 2010 Phys. Scripta 82 065003
[6] Ma W X 2015 Phys. Lett. A 379 1975
[7] Chao Q, Rao J G, Liu Y B and He J S 2016 Chin. Phys. Lett. 33 110201
[8] Liu J G and Zhang Y F 2018 Z. Natur. A 73 143
[9] Yang X J and J A T M 2019 Math. Meth. Appl. Sci. (accepted)
[10] Gao F, Yang X J and Ju Y 2019 Fractals 27 1940010
[11] Ma W X 2019 Mathematics 7 573
[12] Lü X, Wang J P, Lin F H and Zhou X W 2018 Nonl. Dyn. 91 1249
[13] Liu J G and Zhang Y F 2018 Result. Phys. 10 94
[14] Liu J G, Wu P X, Zhang Y F and Feng B L 2017 Therm. Sci. 21 169
[15] Ma W X and Zhou Y 2018 J. Diff. Equ. 264 2633
[16] Ma W X, Li J and Khalique C M 2018 Complexity 2018 9059858
[17] Ma W X 2019 Front. Math. Chin. 14 619
[18] Ma W X 2019 J. Appl. Anal. Comput. 9 1319
[19] Xu S Q and Geng X G 2018 Chin. Phys. B 27 120202
[20] Zhou Z K, Xia T C and Ma X 2018 Chin. Phys. B 27 070201
[21] Ömer ünsal and Ma W X 2016 Comput. Math. Appl. 71 1242
[22] Zhou Y and Ma W X 2017 Comput. Math. Appl. 73 1697
[23] Ma W X, Zhang Y, Tang Y and Tu J 2012 Appl. Math. Comput. 218 7174
[24] Zheng H C, Ma W X and Gu X 2008 Appl. Math. Comput. 220 226
[25] Ma W X and Fan E G 2011 Comput. Math. Appl. 61 950
[26] Liu J G, Zhang Y F and Muhammad I 2018 Comput. Math. Appl. 75 3939
[27] Lin F H, Chen S T, Qu Q X, Wang J P, Zhou X W and Lü X 2018 Appl. Math. Lett. 78 112
[28] Hirota R 1980 Direct Methods in Soliton Theory (Berlin:Springer) p. 157
[29] Zhang L, Khalique C M and Ma W X 2016 Int. J. Mod. Phys. B 30 1640029
[30] Ohta Y, Satsuma J, Takahashi D and Tokihiro T 1998 Prog. Theor. Phys. Suppl. 94 210
[31] Harada H 1985 J. Phys. Soc. Jpn. 54 4507
[32] Harada H 1987 J. Phys. Soc. Jpn. 56 3847
[33] Adamu M Y and Suleiman E 2014 Am. J. Comput. Appl. Math. 4 155
[1] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[2] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[5] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[6] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[7] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[8] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[9] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[12] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[13] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[14] Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance
Hongcai Ma(马红彩), Yuxin Wang(王玉鑫), and Aiping Deng(邓爱平). Chin. Phys. B, 2022, 31(1): 010201.
[15] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
No Suggested Reading articles found!