Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 110201    DOI: 10.1088/1674-1056/ab44a3
GENERAL   Next  

Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev-Petviashvili equation

Zhao Zhang(张钊), Xiangyu Yang(杨翔宇), Wentao Li(李文涛), Biao Li(李彪)
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
Abstract  Based on the hybrid solutions to (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation, the motion trajectory of the solutions to KP equation is further studied. We obtain trajectory equation of a single lump before and after collision with line, lump, and breather waves by approximating solutions of KP equation along some parallel orbits at infinity. We derive the mathematical expression of the phase change before and after the collision of a lump wave. At the same time, we give some collision plots to reveal the obvious phase change. Our method proposed to find the trajectory equation of a lump wave can be applied to other (2+1)-dimensional integrable equations. The results expand the understanding of lump, breather, and hybrid solutions in soliton theory.
Keywords:  hybrid solutions      trajectory equation      long wave limit      phase  
Received:  05 June 2019      Revised:  21 August 2019      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775121, 11805106, and 11435005) and K C Wong Magna Fund in Ningbo University, China.
Corresponding Authors:  Biao Li     E-mail:  libiao@nbu.edu.cn

Cite this article: 

Zhao Zhang(张钊), Xiangyu Yang(杨翔宇), Wentao Li(李文涛), Biao Li(李彪) Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev-Petviashvili equation 2019 Chin. Phys. B 28 110201

[1] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[2] Song F X, Yu Z Y and Yang H W 2019 Math. Model. Nat. Phenom. 14 301
[3] Tian R H, Fu L, Ren Y W and Yang H W 2019 Math. Meth. Appl. Sci. 2019 1
[4] Chen A H and Wang F F 2019 Phys. Scr. 94 055206
[5] Li H and Lou S Y 2019 Chin. Phys. Lett. 36 050501
[6] Ablowitz M J and Satsuma J 1978 J. Math. Phys. 19 2180
[7] Satsuma J 1976 J. Phys. Soc. Jpn. 40 286
[8] Satsuma J and Ablowitz M J 1979 J. Math. Phys. 20 1496
[9] Liu Y K, Li B and An H L 2018 Nonlinear Dyn. 92 2061
[10] Ma W X 2015 Phys. Lett. A 379 1975
[11] Chen M D, Li X, Wang Y and Li B 2017 Commun. Theor. Phys. 67 595.
[12] Zhang X E and Chen Y 2017 Commun. Nonlinear Sci. Numer. Simul. 52 24
[13] Huang L L and Chen Y 2017 Commun. Theor. Phys. 67 473
[14] Zhou Y, Solomon M and Ma W X 2019 Commun. Nonlinear Sci. Numer. Simul. 68 56
[15] Tian S F and Ma P C 2014 Commun. Theor. Phys. 62 245
[16] Zheng P F and Jia M 2018 Chin. Phys. B 27 120201
[17] Huang L L, Qiao Z J and Chen Y 2018 Chin. Phys. B 27 020201
[18] Cao Y, Rao J, Mihalache D and He J 2018 Applied Math. Lett. 80 27
[19] Qian C, Rao J, Mihalache D and He J 2018 Comp. Math. Appl. 75 3317
[20] Tajiri M, Fujimura Y and Murakami Y 1992 J. Phys. Soc. Jpn. 61 783
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[3] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[4] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[7] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[8] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[9] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[10] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[11] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[12] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[13] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[14] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[15] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
No Suggested Reading articles found!