CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Expansion dynamics of a spherical Bose-Einstein condensate |
Rui-Zong Li(李睿宗)1,3, Tian-You Gao(高天佑)1, Dong-Fang Zhang(张东方)1, Shi-Guo Peng(彭世国)1, Ling-Ran Kong(孔令冉)1,3, Xing Shen(沈星)1,3, Kai-Jun Jiang(江开军)1,2 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China;
3 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We experimentally and theoretically observe the expansion behaviors of a spherical Bose-Einstein condensate. A rubidium condensate is produced in an isotropic optical dipole trap with an asphericity of 0.037. We measure the variation of the condensate size in the expansion process after switching off the trap. The free expansion of the condensate is isotropic, which is different from that of the condensate usually produced in the anisotropic trap. We derive an analytic solution of the expansion behavior based on the spherical symmetry, allowing a quantitative comparison with the experimental measurement. The interaction energy of the condensate is gradually converted into the kinetic energy during the expansion and after a long time the kinetic energy saturates at a constant value. We obtain the interaction energy of the condensate in the trap by probing the long-time expansion velocity, which agrees with the theoretical calculation. This work paves a way to explore novel quantum states of ultracold gases with the spherical symmetry.
|
Received: 12 July 2019
Revised: 21 August 2019
Accepted manuscript online:
|
PACS:
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
67.10.Ba
|
(Boson degeneracy)
|
|
34.50.Cx
|
(Elastic; ultracold collisions)
|
|
37.10.De
|
(Atom cooling methods)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301503), the National Natural Science Foundation of China (Grant Nos. 11674358, 11434015, and 11474315), and Chinese Academy of Sciences (Grant No. YJKYYQ20170025). |
Corresponding Authors:
Tian-You Gao, Kai-Jun Jiang
E-mail: 602gty@sina.com;kjjiang@wipm.ac.cn
|
Cite this article:
Rui-Zong Li(李睿宗), Tian-You Gao(高天佑), Dong-Fang Zhang(张东方), Shi-Guo Peng(彭世国), Ling-Ran Kong(孔令冉), Xing Shen(沈星), Kai-Jun Jiang(江开军) Expansion dynamics of a spherical Bose-Einstein condensate 2019 Chin. Phys. B 28 106701
|
[1] |
Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
[2] |
Jin D S, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1996 Phys. Rev. Lett. 77 420
|
[3] |
Mewes M-O, Andrews M R, van Druten N J, Kurn D M, Durfee D S, Townsend C G and Ketterle W 1996 Phys. Rev. Lett. 77 988
|
[4] |
Ozeri R, Katz N, Steinhauer J and Davidson N 2005 Rev. Mod. Phys. 77 187
|
[5] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[6] |
Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
|
[7] |
Eckardt A 2017 Rev. Mod. Phys. 89 011004
|
[8] |
Lin Y J, Jimenez-Garcia K and Spielman I B 2011 Nature 471 83
|
[9] |
Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
|
[10] |
Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
|
[11] |
Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys. 83 1405
|
[12] |
Ketterle W, Durfee D and Stamper-Kurn D 1999 In Bose-Einstein condensation in atomic gases, Proceedings of the International School of Physics "Enrico Fermi", Course CXL (M Inguscio, S Stringari and C E Wieman (IOS Press: Amsterdam) pp. 67-176
|
[13] |
Dalfovo F and Stringari S 1996 Phys. Rev. A 53 2477
|
[14] |
Baym G and Pethick C J 1996 Phys. Rev. Lett. 76 6
|
[15] |
Castin Y and Dum R 1996 Phys. Rev. Lett. 77 5315
|
[16] |
Holland M J, Jin D S, Chiofalo M L and Cooper J 1997 Phys. Rev. Lett. 78 3801
|
[17] |
Dalfovo F, Minniti C, Stringari S and Pitaevskii L P 1997 Phys. Lett. A 227 259
|
[18] |
Hodby E, Hechenblaikner G, Marago O M, Arlt J, Hopkins S and Foot C J 2000 J. Phys. B: At. Mol. Opt. Phys. 33 4087
|
[19] |
Lobser D S, Barentine A E S, Cornell E A and Lewandowski H J 2015 Nat. Phys. 11 1009
|
[20] |
Zhang D, Gao T, Kong L, Li K and Jiang K 2016 Chin. Phys. Lett. 33 76701
|
[21] |
Ernst U, Marte A, Schreck F, Schuster J and Rempe G 1998 Europhys. Lett. 4 1
|
[22] |
Ernst U, Schuster J, Schreck F, Marte A, Kuhn A and Rempe G. 1998 Appl. Phys. B 67 719
|
[23] |
Mewes M-O, Andrews M R, van Druten N J, Kurn D M, Durfee D S and Ketterle W 1996 Phys. Rev. Lett. 77 416
|
[24] |
Zhang D, Gao T, Zou P, Kong L, Li R, Shen X, Chen X, Peng S, Zhan M, Pu H and Jiang K 2019 Phys. Rev. Lett. 122 110402
|
[25] |
Gao T, Zhang D, Kong L, Li R and Jiang K 2018 Chin. Phys. Lett. 35 86701
|
[26] |
Lin Y J, Perry A R, Compton R L, Spielman I B and Porto J V 2009 Phys. Rev. A 79 063631
|
[27] |
Stringari S 1996 Phys. Rev. Lett. 77 2360
|
[28] |
Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Huang P P, Yip S K, Kawaguchi Y and Lin Y J 2018 Phys. Rev. Lett. 121 113204
|
[29] |
Chen P K, Liu L R, Tsai M J, Chiu N C, Kawaguchi Y, Yip S K, Chang M S and Lin Y J 2018 Phys. Rev. Lett. 121 250401
|
[30] |
Guilleumas M and Pitaevskii L P 1999 Phys. Rev. A 61 013602
|
[31] |
Gao T, Pan J S, Zhang D, Kong L, Li R, Shen X,Chen X, Peng S G,Zhan M, Liu W V and Jiang K 2018 arXiv: 1805.04727
|
[32] |
Pitaevskii L 1997 Phys. Lett. A 229 406
|
[33] |
Rusch M, Morgan S A, Hutchinson D A W and Burnett K 2000 Phys. Rev. Lett. 85 4844
|
[34] |
Straatsma C J E, Colussi V E, Davis M J, Lobser D S, Holland M J, Anderson D Z, Lewandowski H J and Cornell E A 2016 Phys. Rev. A 94 043640
|
[35] |
Liu X J, Hu H, Minguzzi A and Tosi M P 2004 Phys. Rev. A 69 043605
|
[36] |
Williams J E and Griffin A 2001 Phys. Rev. A 64 013606
|
[37] |
Jackson B and Zaremba E 2002 Phys. Rev. A 66 033606
|
[38] |
Giorgini S 2000 Phys. Rev. A 61 063615
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|