Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 098701    DOI: 10.1088/1674-1056/ab37fc
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Terahertz coherent detection via two-color laser pulses of various frequency ratios

Xin-Yang Gu(顾新杨)1, Ke-Jia Wang(王可嘉)1, Zhen-Gang Yang(杨振刚)2, Jin-Song Liu(刘劲松)1
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  

The mechanism of terahertz (THz) pulse coherent detection via two-color laser pulses of various frequency ratios in gas plasma is theoretically investigated. Our investigations demonstrate that except for the commonly used frequency ratio of 2, other uncommon frequency ratios can also be utilized to detect THz pulse, such as 2n, n+1/2 (n ≤ 3, n is a positive integer). The well-developed transient photocurrent model is extended to our terahertz detection process. Based on this model, our simulation results can be explained by analyzing the process of asymmetric electron ionization and electron acceleration.

Keywords:  terahertz      gas plasma      coherent detection      photoionization  
Received:  18 June 2019      Revised:  11 July 2019      Accepted manuscript online: 
PACS:  87.50.U-  
  52.25.Jm (Ionization of plasmas)  
  78.47.jh (Coherent nonlinear optical spectroscopy)  
  87.15.mn (Photoionization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105, 61475054, and 61405063).

Corresponding Authors:  Jin-Song Liu     E-mail:  jsliu4508@vip.sina.com

Cite this article: 

Xin-Yang Gu(顾新杨), Ke-Jia Wang(王可嘉), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松) Terahertz coherent detection via two-color laser pulses of various frequency ratios 2019 Chin. Phys. B 28 098701

[1] Schmuttenmaer C A 2004 Chem. Rev. 104 1759
[2] Leitenstorfer A, Hunsche S, Shah J, Nuss M C and Knox W H 1999 Appl. Phys. Lett. 74 1516
[3] Dietz R J B, Globisch B, Roehle H, Stanze D, Göbel T and Schell M 2014 Opt. Lett. 22 19411
[4] Oguchi K, Iwasaki H, Okano M and Watanabe S 2016 Appl. Phys. Lett. 108 011105
[5] Zhang X C and Xu J 2010 Introduction To THz Wave Photonics (New York:Springer-Verlag) pp. 27-48
[6] Dai J, Xie X and Zhang X C 2006 Phys. Rev. Lett. 97 103903
[7] Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H and Zhang X C 2008 Appl. Phys. Lett. 92 011131
[8] Dai J, Clough B, Ho I C, Lu X, Liu J and Zhang X C 2011 IEEE Trans. Terahertz Sci. Technol. 1 274
[9] Dai J, Liu J and Zhang X C 2011 IEEE J. Sel. Top. Quantum Electron. 17 183
[10] Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
[11] Bartel T, Gaal P, Reimann K, Woerner M and Elsaesser T 2005 Opt. Lett. 30 2805
[12] Wang W M, Sheng Z M, Li Y T, Zhang Y and Zhang J 2017 Phys. Rev. A 96 023844
[13] Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M and Zhang X C 2017 Phys. Rev. Lett. 119 235001
[14] Wang W M, Zhang L L, Li Y T, Sheng Z M and Zhang J 2018 Acta Phys. Sin. 67 124202(in Chinese)
[15] Kim K Y, Glownia J H, Taylor A J and Rodriguez G 2007 Opt. Express 15 4577
[16] Kim K Y 2009 Phys. Plasmas 16 056706
[17] Wang H, Wang K, Liu J, Dai H and Yang Z 2012 Opt. Express 20 19264
[18] Kostin V A, Laryushin I D, Silaev A A and Vvedenskii N V 2016 Phys. Rev. Lett. 117 035003
[19] Vvedenskii N V, Korytin A I, Kostin V A, Murzanev A A, Silaev A A and Stepanov A N 2014 Phys. Rev. Lett. 112 055004
[20] Li C Y, Seletskiy D V, Yang Z and Sheik-Bahae M 2015 Opt. Express 23 11436
[21] Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett. 62 1259
[22] Dai J, Karpowicz N and Zhang X C 2009 Phys. Rev. Lett. 103 023001
[23] Lee S H, Lu J, Lee S J, Han J H, Jeong C U, Lee S C, Li X, Jazbinšek M, Yoon W, Yun H, Kang B J, Rotermund F, Nelson K A and Kwon O P 2017 Adv. Mater. 29 1701748
[24] Kang B J, Baek I H, Lee S H, Kim W T, Lee S J, Jeong Y U, Kwon O P and Rotermund F 2016 Opt. Express 24 11054
[25] Mingardi A, Zhang W D, Brown E R, Feldman A D, Harvey T E and Mirin R P 2018 Opt. Express 26 14472
[26] Zhang S, Zhang L L, Wu T, Zhao H and Yu X M 2017 Terahertz Emit. Receiv. Appl. VⅢ, August 23, 2017, San Diego, California, USA, p. 103830E
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[11] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!