|
|
The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone |
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军) |
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract The excited state intramolecular proton transfer of four derivatives (FM, BFM, BFBC, CCM) of 3-hydroxychromone is investigated. The geometries of different substituents are optimized to study the substituent effects on proton transfer. The mechanism of hydrogen bond enhancement is qualitatively elucidated by comparing the infrared spectra, the reduced density gradient, and the frontier molecular orbitals. The calculated electronic spectra are consistent with the experimental results. To quantify the proton transfer, the potential energy curves (PECs) of the four derivatives in S0 and S1 states are scanned. It is concluded that the ability of proton transfer follows the order:FM > BFM > BFBC > CCM.
|
Received: 13 June 2019
Revised: 05 July 2019
Accepted manuscript online:
|
PACS:
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874241, 11847224, and 11804195), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the Taishan Scholar Project of Shandong Province, China, China Post-Doctoral Foundation (Grant No. 2018M630796), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018BA034). |
Corresponding Authors:
Yuzhi Song, Yuzhi Song
E-mail: yzsong@sdnu.edu.cn;dujun@sdnu.edu.cn
|
Cite this article:
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军) The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone 2019 Chin. Phys. B 28 093102
|
[42] |
Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
|
[1] |
Li D L, Yang Y G, Li C Z and Liu Y F 2017 Environ. Res. 154 139
|
[43] |
Gross E K U and Kohn W 1990 Adv. Quantum. Chem. 21 255
|
[2] |
Yang Y G, Li D L, Li C Z, Liu Y F and Jiang K J 2018 J. Hazard. Mater. 341 93
|
[44] |
Marcus Y and Glikberg S 1985 Pure Appl. Chem. 57 855
|
[3] |
Tung C H, Wu L Z, Zhang L P and Chen B 2003 Acc. Chem. 36 39
|
[45] |
Lu T and Chen F W 2012 J. Comput. Chem. 33 580
|
[4] |
Cramer C J and Truhlar D G 2008 Acc. Chem. Res. 41 760
|
[46] |
Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J and Yang W 2010 Chem. Soc. 132 6498
|
[5] |
Olsen S and Smith S C 2008 J. Am. Chem. Soc. 130 8677
|
[47] |
Furche F and Ahlrichs R 2002 J. Chem. Phys. 117 7433
|
[6] |
Chu T S and Liu B T 2016 Int. Rev. Phys. Chem. 35 187
|
[48] |
Kobayashi T, Yabushita A, Saito T, Ohtani H and Tsuda M 2007 Photochem. Photobiol. 83 363
|
[7] |
Li C Z, Ma C, Li D L and Liu Y F 2016 J. Lumin. 172 29
|
[49] |
Saga Y, Shibata Y and Tamiaki H 2010 J. Photochem. Photobiol. C 11 15
|
[8] |
Weller A 1956 Phys. Chem. 60 1144
|
[50] |
Song Y Z, Liu S, Ma Y Z, Yang Y F, Li Y Q and Xu J H 2018 J. Mol. Struct. 1173 341
|
[9] |
Zhao J F, Yao H B, Liu J Y and Hoffmann M R 2015 J. Phys. Chem. A 119 681
|
[51] |
Zhang H, Wang S F, Sun Q and Smith S C 2009 Phys. Chem. Chem. Phys. 11 8422
|
[10] |
Liu S S, Zhao Y, Zhang C Z, Lin L L, Li Y Q and Song Y Z 2019 Spectrochim. Acta, Part A 219 164
|
[52] |
Sobolewski A L and Domcke W 1999 Phys. Chem. Chem. Phys. 1 3065
|
[11] |
Liu S, Ma Y Z, Yang Y F, Liu S S, Li Y Q and Song Y Z 2018 Chin. Phys. B. 27 023103
|
[53] |
Li Y Q, Ma Y Z, Yang Y F, Shi W, Lan R F and Guo Q 2018 Phys. Chem. Chem. Phys. 20 4208
|
[12] |
Yin H, Zhang Y M, Zhao H F, Yang G J, Shi Y, Zhang S X A and Ding D J 2018 Dyes Pigm. 159 506
|
[54] |
Lan R F, Yang Y F, Ma Y Z and Li Y Q 2017 Spectrochim. Acta, Part A 183 37
|
[13] |
Zhao J F, Dong H and Zheng Y J 2018 J. Phys. Chem. A 122 1200
|
[14] |
Song Y Z, Liu S, Yang Y F, Wei D M, Pan J and Li Y Q 2019 Spectrochim. Acta, Part A 208 309
|
[15] |
Liu S S, Pan J, Wei D M, Xu J H, Zhou Y and Song Y Z 2019 Can. J. Phys. 97 721
|
[16] |
Tian M G, Sun J, Tang Y H, Dong B L and Lin W Y 2018 Anal. Chem. 90 998
|
[17] |
Liu Y F, Ding J X, Shi D H and Sun J F 2008 J. Phys. Chem. A. 112 6244
|
[18] |
Zhao G J and Han K L 2007 J. Phys. Chem. A 111 2469
|
[19] |
Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
|
[20] |
Zhao G J and Han K L 2008 Chem. Phys. Chem. 9 1842
|
[21] |
Zhao G J and Han K L 2009 J. Phys. Chem. A 113 4788
|
[22] |
Ma Y Z, Yang Y F, Shi W, Song Y Z and Li Y Q 2018 Spectrochim. Acta, Part A 202 30
|
[23] |
Yang Y F, Ma Y Z, Zhao Y, Zhao Y L and Li Y Q 2018 J. Phys. Chem. A 122 1011
|
[24] |
Dong H, Zhao J F, Yang H and Zheng Y J 2018 Org. Chem. Front. 5 1241
|
[25] |
Hao J J and Yang Y 2018 Org. Chem. Front. 5 2234
|
[26] |
Catalan J, Delvalle J C and Fabero F 1995 Photochem. Photobiol. 61 118
|
[27] |
Chou P T, Martinez M L and Cooper W C 1994 Appl. Spectrosc. 48 604
|
[28] |
Chou P T, Martinez M L and Studer S L 1991 Appl. Spectrosc. 45 918
|
[29] |
Chou P T, Wei C Y, Wang C R C, Hung F T and Chang C P 1999 J. Phys. Chem. A 103 1939
|
[30] |
Chen J S, Zhou P W and Yang S Q 2013 Phys. Chem. Chem. Phys. 15 16183
|
[31] |
Kim T G, Kim Y and Jang D J 2001 J. Phys. Chem. A 105 4328
|
[32] |
Huang J D, Teng W F, Chen D Y and Ma H P 2018 J. Mol. Liq. 249 957
|
[33] |
Kanamori D, Okamura T A, Yamamoto H and Ueyama N 2005 Angew. Chem. Int. Ed. 44 969
|
[34] |
Chen J S, Zhou P W, Zhao L and Chu T S 2014 RSC Adv. 4 254
|
[35] |
Li A, Sun H X, Tan D Z, Fan W J, Wen S H, Qing X J, Li G X, Li S Y and Deng W Q 2011 Energy Environ. Sci. 4 2062
|
[36] |
Li A, Lu R F, Wang Y, Wang X, Han K L and Deng W Q 2010 Angew. Chem. Int. Ed. 49 3330
|
[37] |
Catalán J, Valle J C D, Fabero F and Garcia N A 1995 Photochem. Photobiol. 61 118
|
[38] |
Kyriukha Y A, Kucherak O A, Yushchenko T I, Shvadchak V V and Yushchenko D A 2018 Sens. Actuators, B 265 691
|
[39] |
Ma D G, Liang F S, Wang L X, Lee S T and Hung L S 2002 Chem. Phys. Lett. 358 24
|
[40] |
FrischM J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A and Nakatsuji H 2016 Gaussian 16 Rev. A. 03
|
[41] |
Becke A D 1993 J. Chem. Phys. 98 5648
|
[42] |
Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
|
[43] |
Gross E K U and Kohn W 1990 Adv. Quantum. Chem. 21 255
|
[44] |
Marcus Y and Glikberg S 1985 Pure Appl. Chem. 57 855
|
[45] |
Lu T and Chen F W 2012 J. Comput. Chem. 33 580
|
[46] |
Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J and Yang W 2010 Chem. Soc. 132 6498
|
[47] |
Furche F and Ahlrichs R 2002 J. Chem. Phys. 117 7433
|
[48] |
Kobayashi T, Yabushita A, Saito T, Ohtani H and Tsuda M 2007 Photochem. Photobiol. 83 363
|
[49] |
Saga Y, Shibata Y and Tamiaki H 2010 J. Photochem. Photobiol. C 11 15
|
[50] |
Song Y Z, Liu S, Ma Y Z, Yang Y F, Li Y Q and Xu J H 2018 J. Mol. Struct. 1173 341
|
[51] |
Zhang H, Wang S F, Sun Q and Smith S C 2009 Phys. Chem. Chem. Phys. 11 8422
|
[52] |
Sobolewski A L and Domcke W 1999 Phys. Chem. Chem. Phys. 1 3065
|
[53] |
Li Y Q, Ma Y Z, Yang Y F, Shi W, Lan R F and Guo Q 2018 Phys. Chem. Chem. Phys. 20 4208
|
[54] |
Lan R F, Yang Y F, Ma Y Z and Li Y Q 2017 Spectrochim. Acta, Part A 183 37
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|