Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 080305    DOI: 10.1088/1674-1056/28/8/080305
GENERAL Prev   Next  

Tunable coupling between Xmon qubit and coplanar waveguide resonator

He-Kang Li(李贺康)1,3, Ke-Min Li(李科敏)2, Hang Dong(董航)2, Qiu-Jiang Guo(郭秋江)2, Wu-Xin Liu(刘武新)2, Zhan Wang(王战)1,3, Hao-Hua Wang(王浩华)2, Dong-Ning Zheng(郑东宁)1,3,4
1 Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Realization of a flexible and tunable coupling scheme among qubits is critical for scalable quantum information processing. Here, we design and characterize a tunable coupling element based on Josephson junction, which can be adapted to an all-to-all connected circuit architecture where multiple Xmon qubits couple to a common coplanar waveguide resonator. The coupling strength is experimentally verified to be adjustable from 0 MHz to about 40 MHz, and the qubit lifetime can still be up to 12 μs in the presence of the coupling element.

Keywords:  superconducting Xmon qubit      qubit-resonator coupling      tunable coupling  
Received:  10 April 2019      Revised:  22 May 2019      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  85.25.Cp (Josephson devices)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304300 and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 11725419 and 11434008), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).

Corresponding Authors:  Hao-Hua Wang, Dong-Ning Zheng     E-mail:  hhwang@zju.edu.cn;dzheng@iphy.ac.cn

Cite this article: 

He-Kang Li(李贺康), Ke-Min Li(李科敏), Hang Dong(董航), Qiu-Jiang Guo(郭秋江), Wu-Xin Liu(刘武新), Zhan Wang(王战), Hao-Hua Wang(王浩华), Dong-Ning Zheng(郑东宁) Tunable coupling between Xmon qubit and coplanar waveguide resonator 2019 Chin. Phys. B 28 080305

[1] You J Q and Nori F 2007 Physics Today 58 42
[2] Nielsen M A and Chuang I 2011 Quantum Computation Quantum Information, 10th edn. (Cambridge: Cambridge University Press) p. 47
[3] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[4] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[5] Chiorescu I, Nakamura Y, Harmans C and Mooij J E 2003 Science 299 1869
[6] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[7] Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113
[8] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Clel, A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
[9] Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Cleland A N and Martinis J M 2009 Appl. Phys. Lett. 95 233508
[10] Gambetta J M, Murray C E, Fung Y K K, McClure D T, Dial O, Shanks W, Sleight J W and Steffen M 2017 IEEE Trans. Appl. Supercond. 27 1
[11] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500
[12] Kelly J, Barends R, Fowler A G, et al. 2015 Nature 519 66
[13] Song C, Xu K, Liu W, Yang C, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511
[14] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D and Fan H 2018 Phys. Rev. Lett. 120 050507
[15] Chen Y, Neill C, Roushan P, et al. 2014 Phys. Rev. Lett. 113 220502
[16] Geller M R, Donate E, Chen Y, Neill C, Roushan P and Martinis J M 2014 arXiv: 1405.1915[cond-mat,physics:quant-ph]
[17] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062
[18] Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 195
[19] Dolan G J 1977 Appl. Phys. Lett. 31 337
[20] Chen Z, Megrant A, Kelly J, Barends R, Bochmann J, Chen Y, Chiaro B, Dunsworth A, Jeffrey E, Mutus J, O'Malley P, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White T, Clel A and Martinis J 2014 Appl. Phys. Lett. 104 052602
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[5] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[6] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[9] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[10] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[11] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[12] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[13] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[14] Optical scheme to demonstrate state-independent quantum contextuality
Ya-Ping He(何亚平), Deng-Ke Qu(曲登科), Lei Xiao(肖磊), Kun-Kun Wang(王坤坤), and Xiang Zhan(詹翔). Chin. Phys. B, 2022, 31(3): 030305.
[15] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
No Suggested Reading articles found!