Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 080201    DOI: 10.1088/1674-1056/28/8/080201
GENERAL   Next  

The evolution of cooperation in public good game with deposit

Xian-Jia Wang(王先甲)1,2, Wen-Man Chen(陈文嫚)1
1 Economics and Management School, Wuhan University, Wuhan 430070, China;
2 Institute of System and Engineer, Wuhan University, Wuhan 430070, China
Abstract  

The emergence of cooperation still remains a fundamental conundrum in the social and behavior sciences. We introduce a new mechanism, deposit mechanism, into theoretical model to explore how this mechanism promotes cooperation in a well-mixed population. Firstly, we extend the common binary-strategy combination of cooperation and defection in public good game by adding a third strategy, namely, deposit cooperation. The players with deposit cooperation strategy pay a deposit in advance to obtain the benefits of public good at a lower contributions compared with the players with cooperation strategy, when the provision of public good is successful. Then, we explore the evolution of cooperation in the public good game with deposit by means of the replicator dynamics. Theoretical computations and stimulations show that the deposit mechanism can promote cooperation in a well-mixed population, and the numbers of equilibrium point are determined by variables of public good game. On the one hand, when the coexistence of cooperators and defectors is the stable equilibrium point in the evolutionary system, increasing the threshold of public good and adopting the weak altruism way for share benefits can enhance the level of cooperation in the population. On the other hand, if the coexistence of deposit cooperators and defectors is the stable equilibrium point, it is effective to promote the deposit cooperation by lowering the values of discount and deposit, and raising the threshold of public good.

Keywords:  evolutionary game theory      cooperation      deposit      weak altruism      discount rate  
Received:  05 May 2019      Revised:  06 June 2019      Accepted manuscript online: 
PACS:  02.50.Le (Decision theory and game theory)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 71871171, 71871173, and 71701076).

Corresponding Authors:  Wen-Man Chen     E-mail:  wenmanchen@whu.edu.cn

Cite this article: 

Xian-Jia Wang(王先甲), Wen-Man Chen(陈文嫚) The evolution of cooperation in public good game with deposit 2019 Chin. Phys. B 28 080201

[40] Chen C Q, Dai Q L, Han W C and Yang J Z 2017 Chin. Phys. Lett. 34 028901
[1] Christie M R, Mcnickle G G, French R A and Michael S B 2018 Proc. Natl. Acad. Sci. USA 115 4441
[41] Tao S Y, Cui M Z, Dai Q L and Yang J Z 2014 Chin. Phys. Lett. 31 110201
[2] Colman A M 2006 Nature 440 744
[42] Jianlei Z, Chunyan Z and Ming C 2015 Sci. Rep. 5 9098
[3] Martinezvaquero L A, Han T A, Pereira L M and Lenaerts T 2017 Sci. Rep. 7 2478
[43] Fletcher J A and Zwick M 2007 J. Theor. Biol. 245 26
[4] Axelrod R, Hamilton W D 1981 Science 211 1390
[44] Li Y and Ye H 2018 Appl. Math. Comput. 320 621
[5] Du P, Xu C and Zhang W 2015 Chin. Phys. Lett. 32 058901
[45] Shimura H and Nakamaru M 2018 J. Theor. Biol. 451 46
[6] Wei L Y, Cui Y F and Li D Y 2018 Acta Phys. Sin. 67 190201 (in Chinese)
[46] Connelly B D, Dickinson K J, Hammarlund S P and Kerr B 2016 Evol. Ecol. 30 267
[7] Martinezvaquero L L A, Han T A, Pereira L M and Lenaerts T 2019 Biol. Lett. 15 0143
[47] Huck S, Leutgeb J and Oprea R 2017 Nat. Commun. 8 15147
[8] Ulrich F 2019 Biol. Lett. 15 0143
[48] Cassese D 2018 Appl. Netw. Sci. 3 29
[9] Li Y M, Du W B, Yang P, Wu T H, Wu D P and Perc M 2019 IEEE Internet Things J. 6 1866
[49] Zhang W, Li Y S and Xu C 2015 Chin. Phys. Lett. 32 118901
[10] Barker J L, Bronstein J L, Friesen M L,Jones E I, Reeve H K, Zink A G and Frederickson M E 1971 Q. Rev. Biol. 46 35
[50] Lopez G R and Levinton J S 1987 Q. Rev. Biol. 62 235
[11] Trivers R L 1971 Q. Rev. Biol. 46 35
[51] Fletcher J A and Doebeli M 2009 Proc. R. Soc. Lond. Ser. B-Biol. Sci. 276 13
[12] Righi S and Takacs K 2018 Sci. Rep. 8 11149
[52] Huang Z G, Wu Z X, Wu A C, Yang L and Wang Y H 2008 Europhys. Lett. 84 50008
[13] M T, Jg F and C R 2016 Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 371 20150472
[53] Novak S, Chatterjee K and Nowak M A 2013 J. Theor. Biol. 334 26
[14] Manfred M, Dirk S and Krambeck H J 2002 Nature 415 424
[54] Ohtsuki H and Nowak M A 2006 J. Theor. Biol. 243 86
[15] Christoph H 2010 J. Theor. Biol. 267 22
[16] Santos F P, Santos F C and Pacheco J M 2018 Nature 555 242
[17] Sasaki T and Uchida S 2014 Biol. Lett. 10 20130903
[18] Sasaki T and Unemi T 2011 J. Theor. Biol. 287 109
[19] Forsyth P A I and Hauert C 2011 J. Math. Biol. 63 109
[20] Andreoni J, Harbaugh W and Vesterlund L 2003 Am. Econ. Rev. 93 893
[21] Boyd R and Richerson P J 1992 Ethol. Sociobiol. 13 171
[22] Li X, Jusup M, Wang Z, Li H, Lei S, Boris P, Eugene S, Shlomo H and Stefano B 2018 Proc. Natl. Acad. Sci. USA 115 30
[23] Yang H X and Chen X 2018 Appl. Math. Comput. 316 460
[24] Boyd R, Gintis H and Bowles S 2010 Science 328 617
[25] James H F 2005 Proc. Natl. Acad. Sci. USA 102 7047
[26] Ohdaira T 2017 Chaos, Solitons and Fractals 95 77
[27] Geng Y, Shen C, Hu K and Shi L 2018 Physica A 503 540
[28] Yu T, Chen S H and Li H 2016 J. Econ. Interact. Coord. 11 313
[29] Rand D G, Nowak M A, Fowler J H and Christakis N A 2014 Proc. Natl. Acad. Sci. USA 111 17093
[30] Nowak M A and May R M 1992 Nature 359 826
[31] Wang X, Lv S and Quan J 2017 Physica A 482 286
[32] Wang X, Zhang L, Du X and Sun Y 2017 Nat. Comput. 16 99
[33] Xie F, Shi J and Lin J 2017 PLoS One 12 e182524
[34] Melamed D and Simpson B 2016 Soc. Networks 45 32
[35] Huang Z G, Wang S J, Xu X J and Wang Y H 2008 Europhys. Lett. 81 28001
[36] Zhao L, Ye X J, Huang Z G, Sun J T, Yang L, Do Y and Wang Y H 2010 J. Stat. Mech.-Theory Exp. 2010 P08009
[37] Perc M and Szolnoki A 2008 Phys. Rev. E 77 011904
[38] Du W B, Cao X B, Hu M B and Wang W X 2009 Europhys. Lett. 87 60004
[39] Li Y M, Zhang J and Perc M 2017 Appl. Math. Comput. 320 437
[40] Chen C Q, Dai Q L, Han W C and Yang J Z 2017 Chin. Phys. Lett. 34 028901
[41] Tao S Y, Cui M Z, Dai Q L and Yang J Z 2014 Chin. Phys. Lett. 31 110201
[42] Jianlei Z, Chunyan Z and Ming C 2015 Sci. Rep. 5 9098
[43] Fletcher J A and Zwick M 2007 J. Theor. Biol. 245 26
[44] Li Y and Ye H 2018 Appl. Math. Comput. 320 621
[45] Shimura H and Nakamaru M 2018 J. Theor. Biol. 451 46
[46] Connelly B D, Dickinson K J, Hammarlund S P and Kerr B 2016 Evol. Ecol. 30 267
[47] Huck S, Leutgeb J and Oprea R 2017 Nat. Commun. 8 15147
[48] Cassese D 2018 Appl. Netw. Sci. 3 29
[49] Zhang W, Li Y S and Xu C 2015 Chin. Phys. Lett. 32 118901
[50] Lopez G R and Levinton J S 1987 Q. Rev. Biol. 62 235
[51] Fletcher J A and Doebeli M 2009 Proc. R. Soc. Lond. Ser. B-Biol. Sci. 276 13
[52] Huang Z G, Wu Z X, Wu A C, Yang L and Wang Y H 2008 Europhys. Lett. 84 50008
[53] Novak S, Chatterjee K and Nowak M A 2013 J. Theor. Biol. 334 26
[54] Ohtsuki H and Nowak M A 2006 J. Theor. Biol. 243 86
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[7] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[8] Voter model on adaptive networks
Jinming Du(杜金铭). Chin. Phys. B, 2022, 31(5): 058902.
[9] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[10] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[11] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[12] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[13] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[14] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[15] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
No Suggested Reading articles found!