INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Voter model on adaptive networks |
Jinming Du(杜金铭)1,2,3,† |
1 Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China; 2 Institute of Industrial and Systems Engineering, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China; 3 Liaoning Engineering Laboratory of Operations Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110819, China |
|
|
Abstract Voter model is an important basic model in statistical physics. In recent years, it has been more and more used to describe the process of opinion formation in sociophysics. In real complex systems, the interactive network of individuals is dynamically adjusted, and the evolving network topology and individual behaviors affect each other. Therefore, we propose a linking dynamics to describe the coevolution of network topology and individual behaviors in this paper, and study the voter model on the adaptive network. We theoretically analyze the properties of the voter model, including consensus probability and time. The evolution of opinions on dynamic networks is further analyzed from the perspective of evolutionary game. Finally, a case study of real data is shown to verify the effectiveness of the theory.
|
Received: 16 November 2021
Revised: 09 December 2021
Accepted manuscript online:
|
PACS:
|
89.65.-s
|
(Social and economic systems)
|
|
87.23.Ge
|
(Dynamics of social systems)
|
|
02.50.Le
|
(Decision theory and game theory)
|
|
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.71790614),the National Natural Science Foundation of China (Grant Nos.61703082,71520107004,and 71621061),the Fundamental Research Funds for the Central Universities,China (Grant No.N2004004),the General Program of the Educational Department of Liaoning Province,China (Grant No.LJKZ0013),and the 111 Project (Grant No.B16009). |
Corresponding Authors:
Jinming Du,E-mail:dujinming@ise.neu.edu.cn
E-mail: dujinming@ise.neu.edu.cn
|
About author: 2021-12-16 |
Cite this article:
Jinming Du(杜金铭) Voter model on adaptive networks 2022 Chin. Phys. B 31 058902
|
[1] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591 [2] Wang Z, Bauch C T, Bhattacharyya S, d'Onofrio A, Manfredi P, Perc M, Perra N, Salathé M and Zhao D 2016 Phys. Rep. 664 1 [3] Perc M, Jordan J J, Rand D G, Wang Z, Boccaletti S and Szolnoki A 2017 Phys. Rep. 687 1 [4] Fu F and Chen X 2017 New J. Phys. 19 071002 [5] Liggett T M 1985 Interacting Particle Systems (New York: Springer-Verlag) [6] Liggett T M 1999 Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes (New York: Springer-Verlag) [7] Stark H U, Tessone C J and Schweitzer F 2008 Phys. Rev. Lett. 101 018701 [8] Sood V and Redner S 2005 Phys. Rev. Lett. 94 178701 [9] Sood V, Antal T and Redner S 2008 Phys. Rev. E 77 041121 [10] Baronchelli A, Castellano C and Pastor-Satorras R 2011 Phys. Rev. E 83 066117 [11] Castellano C, Muñoz M A and Pastor-Satorras R 2009 Phys. Rev. E 80 041129 [12] Masuda N, Gibert N and Redner S 2010 Phys. Rev. E 82 010103(R) [13] Fernández-Gracia J, Suchecki K, Ramasco J J, San Miguel M and Eguíluz V M 2014 Phys. Rev. Lett. 112 158701 [14] Mobilia M 2003 Phys. Rev. Lett. 91 028701 [15] Nowak M A 2006 Evolutionary Dynamics: Exploring the Equations of Life (Cambridge, MA: Harvard University Press) [16] Axelrod R 1997 The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration (Princeton, NJ: Princeton University Press) [17] Dornic I, Chaté H, Chave J and Hinrichsen H 2001 Phys. Rev. Lett. 87 045701 [18] Krapivsky P L 1992 Phys. Rev. A 45 1067 [19] Nowak M A and May R M 1992 Nature 359 826 [20] Nowak M A and May R M 1993 Int. J. Bifurcat. Chaos 3 35 [21] Durrett R and Levin S A 1994 Phil. Trans. R. Soc. B 343 329 [22] Durrett R 1999 SIAM Rev. 41 677 [23] Newman M E J, Moore C and Watts D J 2000 Phys. Rev. Lett. 84 3201 [24] Li H J, Xu W, Song S, Wang W X and Perc M 2021 Chaos, Solitons and Fractals 151 111294 [25] Li H J, Wang Z, Pei J, Cao J and Shi Y 2020 IEEE T. Knowl. Data En. [26] Antal T, Redner S and Sood V 2006 Phys. Rev. Lett. 96 188104 [27] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47 [28] Barabási A L 2016 Network Science (Cambridge: Cambridge University Press) [29] Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press) [30] Newman M E J 2003 SIAM Rev. 45 167 [31] Du W B, Cao X B, Yang H X and Hu M B 2010 Chin. Phys. B 19 010204 [32] Du W B, Ying W, Yan G, Zhu Y B and Cao X B 2017 IEEE T. Circuits-II 64 467 [33] Szolnoki A and Perc M 2016 New J. Phys. 18 083021 [34] Du J, Wu B and Wang L 2015 Sci. Rep. 5 8014 [35] Wang X J, Gu C L, Lv S J and Quan J 2019 Chin. Phys. B 28 020203 [36] Wang W, Du W B, Li W H, Tong L C and Wang J E 2021 Chin. Phys. B 30 018901 [37] Du W, Ying W, Yang P, Cao X, Yan G, Tang K and Wu D 2020 IEEE T. Emerg. Top. Com. Intel. 4 312 [38] Li H J, Wang L, Zhang Y and Perc M 2020 New J. Phys. 22 063035 [39] Li H J, Wang L, Bu Z, Cao J and Shi Y 2021 ACM Trans. Knowl. Discov. Data 16 28 [40] Du J and Tang L 2018 J. Stat. Mech. 2018 013403 [41] Du J 2019 Appl. Math. Comput. 363 124629 [42] Perc M and Szolnoki A 2010 BioSystems 99 109 [43] Gross T and Blasius B 2008 J. R. Soc. Interface 5 259 [44] Vazquez F, Eguíluz V M and Miguel M S 2008 Phys. Rev. Lett. 100 108702 [45] Holme P and Newman M E J 2006 Phys. Rev. E 74 056108 [46] Benczik I J, Benczik S Z, Schmittmann B and Zia R K P 2009 Phys. Rev. E 79 046104 [47] Wu B, Zhou D and Wang L 2011 Phys. Rev. E 84 046111 [48] Maynard Smith J and Price G R 1973 Nature 246 15 [49] Maynard Smith J 1982 Evolution and the Theory of Games (Cambridge, UK: Cambridge University Press) [50] Weibull J W 1995 Evolutionary Game Theory (Cambridge, MA; London, UK: The MIT Press) [51] Hofbauer J and Sigmund K 1998 Evolutionary Games and Population Dynamics (Cambridge, UK: Cambridge University Press) [52] Nowak M A and Sigmund K 2004 Science 303 793 [53] Moran P A P 1962 The Statistical Processes of Evolutionary Theory (Oxford, UK: Clarendon) [54] Traulsen A, Nowak M A and Pacheco J M 2006 Phys. Rev. E 74 011909 [55] Nowak M A, Sasaki A, Taylor C and Fudenberg D 2004 Nature 428 646 [56] Wu B, Altrock P M, Wang L and Traulsen A 2010 Phys. Rev. E 82 046106 [57] Du J, Wu B, Altrock P M and Wang L 2014 J. R. Soc. Interface 11 20140077 [58] Du J, Wu B and Wang L 2012 Phys. Rev. E 85 056117 [59] Henrich J, McElreath R, Barr A, Ensminger J, Barrett C, Bolyanatz A, Cardenas J C, Gurven M, Gwako E, Henrich N, Lesorogol C, Marlowe F, Tracer D and Ziker J 2006 Science 312 1767 [60] Traulsen A, Semmann D, Sommerfeld R D, Krambeck H J and Milinski M 2010 Proc. Natl. Acad. Sci. USA 107 2962 [61] Li Y, Du W, Yang P, Wu T, Zhang J, Wu D and Perc M 2019 IEEE Internet Things 6 1866 [62] Wang X J and Chen W M 2019 Chin. Phys. B 28 080201 [63] Li H J, Bu Z, Wang Z and Cao J 2020 IEEE Trans. Ind. Inf. 16 5327 [64] Zimmermann M G, Eguíluz V M and Miguel M S 2004 Phys. Rev. E 69 065102(R) [65] Santos F C, Pacheco J M and Lenaerts T 2006 PLoS Comput. Biol. 2 e140 [66] Wu B, Arranz J, Du J, Zhou D and Traulsen A 2016 J. R. Soc. Interface 13 20160282 [67] Wu B, Zhou D, Fu F, Luo Q, Wang L and Traulsen A 2010 PLoS ONE 5 e11187 [68] Karlin S and Taylor H M 1975 A First Course in Stochastic Processes 2nd ed (New York: Academic Press) [69] Durrett R 2010 Probability: Theory and Examples (Cambridge: Cambridge University Press) [70] Traulsen A, Pacheco J M and Nowak M A 2007 J. Theor. Biol. 246 522 [71] Altrock P M and Traulsen A 2009 New J. Phys. 11 013012 [72] Iwamasa Y and Masuda N 2014 Phys. Rev. E 90 012816 [73] Gardiner C W 2004 Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, 3rd edn. (London, UK: Springer) [74] van Kampen N G 2007 Stochastic Processes in Physics and Chemistry, 3rd edn. (Amsterdam, NL: Elsevier Science) [75] Taylor P D and Jonker L B 1978 Math. Biosci. 40 145 [76] Zeeman E C 1980 Lect. Notes Math. 819 [77] Traulsen A, Claussen J C and Hauert C 2012 Phys. Rev. E 85 041901 [78] Hauert C and Doebeli M 2004 Nature 428 643 [79] Santos M D, Pinheiro F L, Santos F C and Pacheco J M 2012 J. Theor. Biol. 315 81 [80] Zheng D F, Yin H P, Chan C H and Hui P M 2007 Europhys. Lett. 80 18002 [81] Schelling T C 1978 Micromotives and Macrobehavior (New York & London: W. W. Norton) [82] von Neumann J and Morgenstern O 1944 Theory of Games and Economic Behavior (Princeton, NJ: Princeton University Press) [83] Axelrod R 1984 The Evolution of Cooperation (New York, NY: Basic Books) [84] Axelrod R and Hamilton W D 1981 Science 211 1390 [85] Matsuda H, Ogita N, Sasaki A and Satō K 1992 Prog. Theor. Phys. 88 1035 [86] Fournet J and Barrat A 2014 PLoS ONE 9 e107878 [87] Ross S M 2009 Introduction to Probability Models 10th edn. (Cambridge, MA: Academic Press) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|