Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 058902    DOI: 10.1088/1674-1056/ac43b4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Voter model on adaptive networks

Jinming Du(杜金铭)1,2,3,†
1 Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China;
2 Institute of Industrial and Systems Engineering, College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
3 Liaoning Engineering Laboratory of Operations Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110819, China
Abstract  Voter model is an important basic model in statistical physics. In recent years, it has been more and more used to describe the process of opinion formation in sociophysics. In real complex systems, the interactive network of individuals is dynamically adjusted, and the evolving network topology and individual behaviors affect each other. Therefore, we propose a linking dynamics to describe the coevolution of network topology and individual behaviors in this paper, and study the voter model on the adaptive network. We theoretically analyze the properties of the voter model, including consensus probability and time. The evolution of opinions on dynamic networks is further analyzed from the perspective of evolutionary game. Finally, a case study of real data is shown to verify the effectiveness of the theory.
Keywords:  statistical physics      opinion dynamics      evolutionary game theory      complex systems  
Received:  16 November 2021      Revised:  09 December 2021      Accepted manuscript online: 
PACS:  89.65.-s (Social and economic systems)  
  87.23.Ge (Dynamics of social systems)  
  02.50.Le (Decision theory and game theory)  
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.71790614),the National Natural Science Foundation of China (Grant Nos.61703082,71520107004,and 71621061),the Fundamental Research Funds for the Central Universities,China (Grant No.N2004004),the General Program of the Educational Department of Liaoning Province,China (Grant No.LJKZ0013),and the 111 Project (Grant No.B16009).
Corresponding Authors:  Jinming Du,E-mail:dujinming@ise.neu.edu.cn     E-mail:  dujinming@ise.neu.edu.cn
About author:  2021-12-16

Cite this article: 

Jinming Du(杜金铭) Voter model on adaptive networks 2022 Chin. Phys. B 31 058902

[1] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[2] Wang Z, Bauch C T, Bhattacharyya S, d'Onofrio A, Manfredi P, Perc M, Perra N, Salathé M and Zhao D 2016 Phys. Rep. 664 1
[3] Perc M, Jordan J J, Rand D G, Wang Z, Boccaletti S and Szolnoki A 2017 Phys. Rep. 687 1
[4] Fu F and Chen X 2017 New J. Phys. 19 071002
[5] Liggett T M 1985 Interacting Particle Systems (New York: Springer-Verlag)
[6] Liggett T M 1999 Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes (New York: Springer-Verlag)
[7] Stark H U, Tessone C J and Schweitzer F 2008 Phys. Rev. Lett. 101 018701
[8] Sood V and Redner S 2005 Phys. Rev. Lett. 94 178701
[9] Sood V, Antal T and Redner S 2008 Phys. Rev. E 77 041121
[10] Baronchelli A, Castellano C and Pastor-Satorras R 2011 Phys. Rev. E 83 066117
[11] Castellano C, Muñoz M A and Pastor-Satorras R 2009 Phys. Rev. E 80 041129
[12] Masuda N, Gibert N and Redner S 2010 Phys. Rev. E 82 010103(R)
[13] Fernández-Gracia J, Suchecki K, Ramasco J J, San Miguel M and Eguíluz V M 2014 Phys. Rev. Lett. 112 158701
[14] Mobilia M 2003 Phys. Rev. Lett. 91 028701
[15] Nowak M A 2006 Evolutionary Dynamics: Exploring the Equations of Life (Cambridge, MA: Harvard University Press)
[16] Axelrod R 1997 The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration (Princeton, NJ: Princeton University Press)
[17] Dornic I, Chaté H, Chave J and Hinrichsen H 2001 Phys. Rev. Lett. 87 045701
[18] Krapivsky P L 1992 Phys. Rev. A 45 1067
[19] Nowak M A and May R M 1992 Nature 359 826
[20] Nowak M A and May R M 1993 Int. J. Bifurcat. Chaos 3 35
[21] Durrett R and Levin S A 1994 Phil. Trans. R. Soc. B 343 329
[22] Durrett R 1999 SIAM Rev. 41 677
[23] Newman M E J, Moore C and Watts D J 2000 Phys. Rev. Lett. 84 3201
[24] Li H J, Xu W, Song S, Wang W X and Perc M 2021 Chaos, Solitons and Fractals 151 111294
[25] Li H J, Wang Z, Pei J, Cao J and Shi Y 2020 IEEE T. Knowl. Data En.
[26] Antal T, Redner S and Sood V 2006 Phys. Rev. Lett. 96 188104
[27] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[28] Barabási A L 2016 Network Science (Cambridge: Cambridge University Press)
[29] Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press)
[30] Newman M E J 2003 SIAM Rev. 45 167
[31] Du W B, Cao X B, Yang H X and Hu M B 2010 Chin. Phys. B 19 010204
[32] Du W B, Ying W, Yan G, Zhu Y B and Cao X B 2017 IEEE T. Circuits-II 64 467
[33] Szolnoki A and Perc M 2016 New J. Phys. 18 083021
[34] Du J, Wu B and Wang L 2015 Sci. Rep. 5 8014
[35] Wang X J, Gu C L, Lv S J and Quan J 2019 Chin. Phys. B 28 020203
[36] Wang W, Du W B, Li W H, Tong L C and Wang J E 2021 Chin. Phys. B 30 018901
[37] Du W, Ying W, Yang P, Cao X, Yan G, Tang K and Wu D 2020 IEEE T. Emerg. Top. Com. Intel. 4 312
[38] Li H J, Wang L, Zhang Y and Perc M 2020 New J. Phys. 22 063035
[39] Li H J, Wang L, Bu Z, Cao J and Shi Y 2021 ACM Trans. Knowl. Discov. Data 16 28
[40] Du J and Tang L 2018 J. Stat. Mech. 2018 013403
[41] Du J 2019 Appl. Math. Comput. 363 124629
[42] Perc M and Szolnoki A 2010 BioSystems 99 109
[43] Gross T and Blasius B 2008 J. R. Soc. Interface 5 259
[44] Vazquez F, Eguíluz V M and Miguel M S 2008 Phys. Rev. Lett. 100 108702
[45] Holme P and Newman M E J 2006 Phys. Rev. E 74 056108
[46] Benczik I J, Benczik S Z, Schmittmann B and Zia R K P 2009 Phys. Rev. E 79 046104
[47] Wu B, Zhou D and Wang L 2011 Phys. Rev. E 84 046111
[48] Maynard Smith J and Price G R 1973 Nature 246 15
[49] Maynard Smith J 1982 Evolution and the Theory of Games (Cambridge, UK: Cambridge University Press)
[50] Weibull J W 1995 Evolutionary Game Theory (Cambridge, MA; London, UK: The MIT Press)
[51] Hofbauer J and Sigmund K 1998 Evolutionary Games and Population Dynamics (Cambridge, UK: Cambridge University Press)
[52] Nowak M A and Sigmund K 2004 Science 303 793
[53] Moran P A P 1962 The Statistical Processes of Evolutionary Theory (Oxford, UK: Clarendon)
[54] Traulsen A, Nowak M A and Pacheco J M 2006 Phys. Rev. E 74 011909
[55] Nowak M A, Sasaki A, Taylor C and Fudenberg D 2004 Nature 428 646
[56] Wu B, Altrock P M, Wang L and Traulsen A 2010 Phys. Rev. E 82 046106
[57] Du J, Wu B, Altrock P M and Wang L 2014 J. R. Soc. Interface 11 20140077
[58] Du J, Wu B and Wang L 2012 Phys. Rev. E 85 056117
[59] Henrich J, McElreath R, Barr A, Ensminger J, Barrett C, Bolyanatz A, Cardenas J C, Gurven M, Gwako E, Henrich N, Lesorogol C, Marlowe F, Tracer D and Ziker J 2006 Science 312 1767
[60] Traulsen A, Semmann D, Sommerfeld R D, Krambeck H J and Milinski M 2010 Proc. Natl. Acad. Sci. USA 107 2962
[61] Li Y, Du W, Yang P, Wu T, Zhang J, Wu D and Perc M 2019 IEEE Internet Things 6 1866
[62] Wang X J and Chen W M 2019 Chin. Phys. B 28 080201
[63] Li H J, Bu Z, Wang Z and Cao J 2020 IEEE Trans. Ind. Inf. 16 5327
[64] Zimmermann M G, Eguíluz V M and Miguel M S 2004 Phys. Rev. E 69 065102(R)
[65] Santos F C, Pacheco J M and Lenaerts T 2006 PLoS Comput. Biol. 2 e140
[66] Wu B, Arranz J, Du J, Zhou D and Traulsen A 2016 J. R. Soc. Interface 13 20160282
[67] Wu B, Zhou D, Fu F, Luo Q, Wang L and Traulsen A 2010 PLoS ONE 5 e11187
[68] Karlin S and Taylor H M 1975 A First Course in Stochastic Processes 2nd ed (New York: Academic Press)
[69] Durrett R 2010 Probability: Theory and Examples (Cambridge: Cambridge University Press)
[70] Traulsen A, Pacheco J M and Nowak M A 2007 J. Theor. Biol. 246 522
[71] Altrock P M and Traulsen A 2009 New J. Phys. 11 013012
[72] Iwamasa Y and Masuda N 2014 Phys. Rev. E 90 012816
[73] Gardiner C W 2004 Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, 3rd edn. (London, UK: Springer)
[74] van Kampen N G 2007 Stochastic Processes in Physics and Chemistry, 3rd edn. (Amsterdam, NL: Elsevier Science)
[75] Taylor P D and Jonker L B 1978 Math. Biosci. 40 145
[76] Zeeman E C 1980 Lect. Notes Math. 819
[77] Traulsen A, Claussen J C and Hauert C 2012 Phys. Rev. E 85 041901
[78] Hauert C and Doebeli M 2004 Nature 428 643
[79] Santos M D, Pinheiro F L, Santos F C and Pacheco J M 2012 J. Theor. Biol. 315 81
[80] Zheng D F, Yin H P, Chan C H and Hui P M 2007 Europhys. Lett. 80 18002
[81] Schelling T C 1978 Micromotives and Macrobehavior (New York & London: W. W. Norton)
[82] von Neumann J and Morgenstern O 1944 Theory of Games and Economic Behavior (Princeton, NJ: Princeton University Press)
[83] Axelrod R 1984 The Evolution of Cooperation (New York, NY: Basic Books)
[84] Axelrod R and Hamilton W D 1981 Science 211 1390
[85] Matsuda H, Ogita N, Sasaki A and Satō K 1992 Prog. Theor. Phys. 88 1035
[86] Fournet J and Barrat A 2014 PLoS ONE 9 e107878
[87] Ross S M 2009 Introduction to Probability Models 10th edn. (Cambridge, MA: Academic Press)
[1] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[2] The evolution of cooperation in public good game with deposit
Xian-Jia Wang(王先甲), Wen-Man Chen(陈文嫚). Chin. Phys. B, 2019, 28(8): 080201.
[3] Explosive synchronization of multi-layer frequency-weighted coupled complex systems
Yan-Liang Jin(金彦亮), Lin Yao(姚林), Wei-Si Guo(郭维思), Rui Wang(王瑞), Xue Wang(王雪), Xue-Tao Luo(罗雪涛). Chin. Phys. B, 2019, 28(7): 070502.
[4] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[5] Rapidly calculating the partition function of macroscopic systems
Jing-Tian Li(李菁田), Bo-Yuan Ning(宁博元), Le-Cheng Gong(龚乐诚), Jun Zhuang(庄军), Xi-Jing Ning(宁西京). Chin. Phys. B, 2017, 26(3): 030501.
[6] Effect of a force-free end on the mechanical property of a biopolymer–A path integral approach
Zicong Zhou(周子聪), Béla Joós. Chin. Phys. B, 2016, 25(8): 088701.
[7] A mini-review on econophysics:Comparative study of Chinese and western financial markets
Zheng Bo (郑波), Jiang Xiong-Fei (蒋雄飞), Ni Peng-Yun (倪鹏云). Chin. Phys. B, 2014, 23(7): 078903.
[8] Collective composite-rotating consensus of multi-agent systems
Lin Peng (林鹏), Lu Wan-Ting (卢婉婷), Song Yong-Duan (宋永端). Chin. Phys. B, 2014, 23(4): 040503.
[9] Robust finite-time stabilization of unified chaotic complex systems with certain and uncertain parameters
Liu Ping (刘平). Chin. Phys. B, 2013, 22(7): 070501.
[10] Symmetry breaking in the opinion dynamics of a multi-group project organization
Zhu Zhen-Tao (朱振涛), Zhou Jing (周晶), Li Ping (李平), Chen Xing-Guang (陈星光). Chin. Phys. B, 2012, 21(10): 100503.
[11] A 2-stage strategy updating rule promotes cooperation in the prisoner's dilemma game
Fang Xiang-Sheng (方祥圣), Zhu Ping (朱平), Liu Run-Ran (刘润然), Liu En-Yu (刘恩钰), Wei Gui-Yi (魏贵义). Chin. Phys. B, 2012, 21(10): 108702.
[12] Rotating consensus of multi-agent systems without relative velocity measurement
Chen Xiao-Ping(陈小平), Xu Hong-Bing(徐红兵), and Ban Yong-Xin(班永鑫) . Chin. Phys. B, 2011, 20(9): 090515.
[13] A preliminary investigation on the topology of Chinese and climate networks
Wang Ge-Li(王革丽) and Anastasios A Tsonis. Chin. Phys. B, 2009, 18(11): 5091-5096.
[14] Pair correlations in scale-free networks
Huang Zhuang-Xiong (黄壮雄), Wang Xin-Ran (王欣然), Zhu Han (朱涵). Chin. Phys. B, 2004, 13(3): 273-278.
No Suggested Reading articles found!