Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 080301    DOI: 10.1088/1674-1056/28/8/080301
GENERAL Prev   Next  

The upper bound function of nonadiabatic dynamics in parametric driving quantum systems

Lin Zhang(张林), Junpeng Liu(刘军鹏)
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
Abstract  The adiabatic control is a powerful technique for many practical applications in quantum state engineering, light-driven chemical reactions and geometrical quantum computations. This paper reveals a speed limit of nonadiabatic transition in a general time-dependent parametric quantum system that leads to an upper bound function which lays down an optimal criteria for the adiabatic controls. The upper bound function of transition rate between instantaneous eigenstates of a time-dependent system is determined by the power fluctuations of the system relative to the minimum gap between the instantaneous levels. In a parametric Hilbert space, the driving power corresponds to the quantum work done by the parametric force multiplying the parametric velocity along the parametric driving path. The general two-state time-dependent models are investigated as examples to calculate the bound functions in some general driving schemes with one and two driving parameters. The calculations show that the upper bound function provides a tighter real-time estimation of nonadiabatic transition and is closely dependent on the driving frequencies and the energy gap of the system. The deviations of the real phase from Berry phase on different closed paths are induced by the nonadiabatic transitions and can be efficiently controlled by the upper bound functions. When the upper bound is adiabatically controlled, the Berry phases of the electronic spin exhibit nonlinear step-like behaviors and it is closely related to topological structures of the complicated parametric paths on Bloch sphere.
Keywords:  adiabatic dynamics      parametric driving      upper bound function  
Received:  16 March 2019      Revised:  29 May 2019      Accepted manuscript online: 
PACS:  03.65.Ca (Formalism)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the National Natural Science Foundation of China (Emergency Project, Grant Nos. 11447025 and 11847308).
Corresponding Authors:  Lin Zhang     E-mail:  zhanglincn@snnu.edu.cn

Cite this article: 

Lin Zhang(张林), Junpeng Liu(刘军鹏) The upper bound function of nonadiabatic dynamics in parametric driving quantum systems 2019 Chin. Phys. B 28 080301

[1] Dong D and Petersen I R 2010 IET Control Theory and Appl. 4 2651
[2] Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Science 327 853
[3] Albash T and Lidar D A 2018 Rev. Mod. Phys. 90 015002
[4] Eisert J, Friesdorf M and Gogolin C 2015 Nat. Phys. 11 124
[5] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[6] Marzlin K P and Sanders B C 2004 Phys. Rev. Lett. 93 160408
[7] Petiziol F, Dive B, Mintert F and Wimberger S 2018 Phys. Rev. A 98 043436
[8] Torrontegui E, Ibáñez S, Martínez-Garaot S, Modugno M, del Campo A, Guéry-Odelin D, Ruschhaupt A, Chen X and Muga J G 2013 Adv. At. Mol. Opt. Phys. 62 117
[9] Pfeifer P 1993 Phys. Rev. Lett. 70 3365
[10] Campbell S and Deffner S 2017 Phys. Rev. Lett. 118 100601
[11] Tong D M 2010 Phys. Rev. Lett. 104 120401
[12] Choi J R and Nahm I H 2007 Int. J. Theor. Phys. 46 1
[13] Zhang L and Zhang W P 2016 Ann. Phys. 373 424
[14] Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44 247
[15] Griffiths D J 2005 Introduction to Quantum Mechanics, 2nd edn. (Upper Saddle River: Pearson Prentice Hall)
[16] Berry M V 1984 Proc. R. Soc. Lond. A 392 45
[17] Aguiar Pinto A, Nemes M, Peixoto de Faria J and Thomaz M T 2000 Am. J. Phys. 68 955
[18] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303
[19] Sarandy M S and Lidar D A 2005 Phys. Rev. A 71 012331
[20] Du J F, Hu L Z, Wang Y, Wu J D, Zhao M S and Suter D 2008 Phys. Rev. Lett. 101 060403
[21] Comparat D 2009 Phys. Rev. A 80 012106
[22] Cao H X, Guo Z H, Chen Z L and Wang W H 2013 Sci. China-Phys. Mech. Astron. 56 1401
[23] Avron J E and Elgart A 1999 Commun. Math. Phys. 203 445
[24] Venkatesh B P, Watanabe G and Talkner P 2015 New J. Phys. 17 075018
[25] Lewis H R Jr and Riesenfeld W B 1969 J. Math. Phys. 10 1458
[26] Chen X, Ruschhaupt A, Schmidt S, del Campo A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 104 063002
[27] Shevchenko S N, Ashhab S and Nori F 2010 Phys. Rep. 492 1
[28] Wittig C 2005 J. Phys. Chem. B 109 8428
[1] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[2] Lie transformation on shortcut to adiabaticity in parametric driving quantum systems
Jian-Jian Cheng(程剑剑), Yao Du(杜瑶), and Lin Zhang(张林). Chin. Phys. B, 2021, 30(6): 060302.
[3] Nonadiabatic dynamics of electron injection into organic molecules
Zhu Li-Ping(朱丽萍), Qiu Yu(邱宇), and Tong Guo-Ping(童国平) . Chin. Phys. B, 2012, 21(7): 077302.
No Suggested Reading articles found!