CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structure instability-induced high dielectric properties in[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals |
Xiao-Juan Li(李晓娟)1,2, Xing Fan(樊星)1, Zeng-Zhe Xi(惠增哲)1, Peng Liu(刘鹏)2, Wei Long(龙伟)1, Pin-Yang Fang(方频阳)1, Rui-Hua Nan(南瑞华)1 |
1 Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; 2 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract The structure evolution and origin of ultrahigh dielectric properties have been investigated in the low temperature range from 300 K to 5 K for[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-33PT) crystal. The experimental results reveal that a short-range ordered monoclinic MA is the dominant phase at ambient temperature. As the temperature drops below 270 K, the MA transforms into monoclinic MC, and the MC remains stable until 5 K. Although no phase transition occurs from 5 K to 245 K, polar nanoregions (PNRs) display visible changes. The instability of PNRs is suggested as responsible for the low temperature relaxation. The ultrahigh dielectric constant at room temperature is associated with the instability of local structure and phase transition. Our research provides an insight into the design of high-performance ferroelectric materials.
|
Received: 17 January 2019
Revised: 21 February 2019
Accepted manuscript online:
|
PACS:
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
77.80.B-
|
(Phase transitions and Curie point)
|
|
75.78.Fg
|
(Dynamics of domain structures)
|
|
87.19.rf
|
(Dielectric properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602242 and 51472197) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JM5097). |
Corresponding Authors:
Xiao-Juan Li
E-mail: lixiaojuan28@163.com
|
Cite this article:
Xiao-Juan Li(李晓娟), Xing Fan(樊星), Zeng-Zhe Xi(惠增哲), Peng Liu(刘鹏), Wei Long(龙伟), Pin-Yang Fang(方频阳), Rui-Hua Nan(南瑞华) Structure instability-induced high dielectric properties in[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals 2019 Chin. Phys. B 28 057701
|
[1] |
Li F, Zhang S, Xu Z and Chen L 2017 Adv. Funct. Mater. 27 1700310
|
[2] |
Wang R, Xu H, Yang B, Luo Z, Sun E, Zhao J, Zheng L, Dong Y, Zhou H, Ren Y and Cao W 2016 Appl. Phys. Lett. 108 152905
|
[3] |
Kim K, Paynea D and Zuo J 2013 J. Appl. Cryst. 46 1331
|
[4] |
Xu G, Wen J, Stock C and Gehring P M 2008 Nat. Mater. 7 562
|
[5] |
Li F, Zhang S, Yang T, Xu Z, Zhang N, Liu G, Wang J, Wang J, Cheng Z, Ye Z, Luo J, Shrout T R and Chen L 2016 Nat. Commun. 7 13807
|
[6] |
Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, X Z, Huang Q W, Liao X Z, Chen L Q, Shrout T R and Zhang S J 2018 Nat. Mater. 17 349
|
[7] |
Tan H X, Takenaka H, Xu C S, Duan W H, Grinberg I and Rappe A M 2018 Phys. Rev. B 97 174101
|
[8] |
Harby A E, Hannora A E and El-Desoky M M 2019 J. Alloys Compound 770 906
|
[9] |
Xu C, Li Q, Yan Q, Luo N, Zhang Y and Chu X 2016 J. Am. Ceram. Soc. 99 2706
|
[10] |
Xu G, Luo H, Xu H and Yin Z 2001 Phys. Rev. B 64 020102(R)
|
[11] |
Zheng L, Lu X, Shang H, Xi Z, Wang R, Wang J, Zheng P and Cao W 2015 Phys. Rev. B 91 184105
|
[12] |
Bao P, Yan F, Lu X, Zhu J, Shen H, Wang Y and Luo H 2006 Appl. Phys. Lett. 88 092905
|
[13] |
Wan Y, Li Z, Ma M, Li F, Xu Z, Fan S and Yao X 2014 J. Adv. Dielect. 4 1450004
|
[14] |
Yang Y, Zhang L, Zhu M and Liu Y 2011 J. Appl. Phys. 109 083517
|
[15] |
Noheda B, Cox D, Shirane G, Gao J and Ye Z G 2002 Phys. Rev. B 66 054104
|
[16] |
Bai F, Wang N, Li J, Viehl, D, Gehring P M, Xu G and Shirane G 2004 J. Appl. Phys. 96 1620
|
[17] |
Yang Y, Liu L, Zhang Y, Zhu K, Ma S, Siu G G, Xu Z and Luo H 2010 J. Raman Spectrosc. 41 1735
|
[18] |
Slodczyk A, Daniel P and Kania A 2008 Phys. Rev. B 77 184114
|
[19] |
Li F, Zhang S J, Xu Z, Wei X Y, Luo J and Shrout T R 2010 J Appl. Phys. 108 034106
|
[20] |
Dietze M, Katzke H, Souni M E, Neumann N and Luo H S 2012 Appl. Phys. Lett. 100 242905
|
[21] |
Priya S, Viehl D and Uchino K 2002 Appl. Phys. Lett. 80 4217
|
[22] |
Stock C, Van Eijck L, Fouquet P, Maccarini M, Gehring P M, Xu G, Luo H, Zhao X, Li J F and Viehland D 2010 Phys. Rev. B 81 144127
|
[23] |
Li F, Zhang S J, Damjanovic D, Chen L Q and Shrout T R 2018 Adv. Funct. Mater. 28 1801504
|
[24] |
Svitelskiy O, Toulouse J and Ye Z 2003 Phys. Rev. B 68 104107
|
[25] |
Marssi M E and Dammak H 2007 Solid State Commun. 142 487
|
[26] |
Manley M, Lynn J, Abernathy D, Specht E D, Delaire O, Bishop A R, Sahul R and Buda J D 2014 Nat. Commun. 5 3683
|
[27] |
Luo N N, Zhang, S J, Li Q, Yan Q F, Zhang Y L, Ansell T, Luo J and Shrout T R 2016 J. Mater. Chem. C 4 4568
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|