Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078103    DOI: 10.1088/1674-1056/abfb55
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Crystal growth, structure and optical properties of Pr3+-doped yttria-stabilized zirconia single crystals

Dai-Ni Wang(王黛妮), Shou-Lei Xu(徐守磊), Xiang-Yu Wang(王翔宇), Si-Yao Li(李思瑶), Xing Hong(洪杏), Bernard A. Goodman, and Wen Deng(邓文)
School of Physical Science and Technology, Guangxi University, Nanning 53004, China
Abstract  The development of blue semiconductor light-emitting diodes (LEDs) has produced potential applications for Pr-doped materials that can absorb blue light, especially crystals, and we now report structure and optical properties for high-quality Pr-doped single crystals of yttria-stabilized zirconia (YSZ) grown by the optical floating zone (FZ) method. X-ray diffraction (XRD) and Raman spectroscopy showed that all of the single crystal samples were in the cubic phase, whereas the corresponding ceramic samples contained a mixture of monoclinic and cubic phases. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) spectroscopy showed that Pr was present as the Pr3+ ion in ceramic rods and single crystals after heating to high temperatures. The absorption and photoluminescence excitation (PLE) spectra of the Pr-doped YSZ crystals measured at room temperature showed strong absorption of blue light, while their photoluminescence (PL) spectra showed five emission peaks at 565 nm, 588 nm, 614 nm, 638 nm, and 716 nm under 450 nm excitation. The optimum luminescence properties were obtained with the crystal prepared using 0.15 mol% Pr6O11, and those with higher concentrations showed evidence of quenching of the luminescence properties. In addition, the color purity of Pr-doped YSZ single crystal reached 98.9% in the orange-red region.
Keywords:  yttria-stabilized zirconia (YSZ) single crystal      praseodymium-doped      optical floating zone method      luminescence  
Received:  27 February 2021      Revised:  02 April 2021      Accepted manuscript online:  26 April 2021
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  87.15.mq (Luminescence)  
  87.16.dt (Structure, static correlations, domains, and rafts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975004) and the Key Research and Development Plan Project of Guangxi, China (Grant No. Guike AB18281007).
Corresponding Authors:  Wen Deng     E-mail:  wdeng@gxu.edu.cn

Cite this article: 

Dai-Ni Wang(王黛妮), Shou-Lei Xu(徐守磊), Xiang-Yu Wang(王翔宇), Si-Yao Li(李思瑶), Xing Hong(洪杏), Bernard A. Goodman, and Wen Deng(邓文) Crystal growth, structure and optical properties of Pr3+-doped yttria-stabilized zirconia single crystals 2021 Chin. Phys. B 30 078103

[1] Wang Y, Qin W P, Di W H, Zhang J S and Cao C Y 2008 Chin. Phys. B 17 3300
[2] Eliseeva S V and Bünzli J G 2010 Chem. Soc. Rev. 39 189
[3] Zhao X Y, Sun D L, Luo J Q, Zhang H L, Fang Z Q, Quan C, Li X L, Cheng M J, Zhang Q L and Yin S T 2017 Chin. Phys. B 26 074217
[4] Carlos L D, Ferreira R A S, Bermudez V D Z and Ribeiro S J L 2009 Adv. Mater. 21 509
[5] Zhang Y X, Yu H H, Zhang H J, Di Lieto A, Tonelli M and Wang J Y 2016 Opt. Lett. 41 2692
[6] He X H, Ye Z L, Guan M Y, Lian N and Sun J H 2016 Chin. Phys. B 25 27802
[7] Sun J Y, Sun Y N, Zhu J C, Zeng J H and Du H Y 2013 Chin. Phys. B 22 057803
[8] Chen J L, Devi N, Li N, Fu D J and Ke X W 2018 Chin. Phys. B 27 086102
[9] Zhao E, Liu X D, Tang D Y, Liu L, Liu G Y, Zhou B and Xing C X 2021 Mater. Res. Bull. 133 111027
[10] Zhu J, Xiang J Y, Hu L X, Mao Y, Xiong K and Zhao H Y 2019 Results Phys. 12 771
[11] Luo X C, Shan F X, Xu T X, Zhang X Y, Zhang G C and Wu Y C 2016 J. Cryst. Growth. 455 1
[12] Yu Y, Zhu X R, Zhang X K, Yuan J J, Yu H J, Kuang F G, Xiong Z Z, Liao J F, Zhang W and Wang G F 2016 Opt. Rev. 23 391
[13] Jiang N N, Guo F Y, Xu W S, Zhang Z Y, Jin H, Shi Q L, Zhang X Y, Gao J and Xu H 2020 Toxicology. 436 152429
[14] Bao H B, Qin L S, Ding Y G, Li Z G, Shi H S and Shu K Y 2013 Chin. Phys. Lett. 30 088101
[15] Rademaker K, Krupke W F, Page R H, Payne S A, Petermann K, Huber G Yelisseyev A P, Isaenko L I, Roy U N, Burger A, Mandal K C and Nitsch K 2004 J. Opt. Soc. Am. B 21 2117
[16] Zhao Y, Yang F, Sun J S, Li X P, Zhang J S, Zhang X Z,Xu S, Cheng L H and Chen B J 2019 Acta. Phys. Sin. 68 213301 (in Chinese)
[17] Liu Y S, Zhou S Y, Tu D T, Chen Z, Huang M D, Zhu H M, Ma E and Chen X Y 2012 J. Am. Chem. Soc. 134 15083
[18] Zhou G D, Jin P, Wang Y, Pei G L, Wu J and Wang Z G 2020 Ceram. Int. 46 9691
[19] Borik M A, Bublik V T, Kulebyakin A V, Lomonova E E, Milovich F O, Myzina V A, Osiko V V, Seryakov S V and Tabachkova N Y 2015 J. Eur. Ceram. Soc. 35 1889
[20] Xu S L, Tan X J, Liu F H, Zhang L, Huang Y Y, Goodman B A and Deng W 2019 Ceram. Int. 45 15974
[21] Bao L H, Zhang J X, Zhou S L, Zhang N and Xu H 2011 Chin. Phys. Lett. 28 088101
[22] Fu M Q, Bi Q L and Lü Y J 2017 Chin. Phys. Lett. 34 048102
[23] Tan X J, Xu S L, Wang X Y, Liu F H, Goodman B A, Xiong D K and Deng W 2019 J. Am. Ceram. Soc. 102 6863
[24] Yoon S, Noh T, Kim W, Choi J and Lee H 2013 Ceram. Int. 39 9247
[25] Hwang K, Shin M, Lee M, Lee H, Oh M Y and Shin T H 2019 Ceram. Int. 45 9462
[26] Popov V V, Menushenkov A P, Yastrebtsev A A, Tsarenko N A, Arzhatkina L A, Shchetinin I V, Zheleznyi M V and Ponkratov K V 2017 Russ. J. Inorg. Chem+. 62 1147
[27] Soares M R N, Nico C, Rodrigues J, Peres M, Soares M J, Fernandes A J S, Costa F M and Monteiro T 2011 Opt. Mater. 34 27
[28] Zhang C, Liu T, Wang H J, Wang F and Pan X Y 2011 Chem. Eng. J. 174 236
[29] Anirban S K and Dutta A 2017 Mater. Res. Bull. 86 119
[30] Pomiro F J, Gaviria J P, Fouga G G, Vega L D and Bohe A E 2018 J. Alloy. Compd. 776 919
[31] Mekki A, Ziq K, Holland D and McConville C 2003 J. Magn. Magn. Mater. 260 60
[32] Savoini B, Santiuste J and Gonzalez R 1997 Phys. Rev. B 56 5856
[33] Amlouk A, El Mir L, Kraiem S, Saadoun M, Alaya S and Pierre C 2008 Mater. Sci. Eng. B 146 74
[34] Treu B L, Fahrenholtz W G and O'Keefe M J 2011 Inorg. Mater. 47 974
[35] Zhang Y J, Han K D, Yin X B, Fang Z Y, Xu Z Y and Zhu W 2009 J. Cryst. Growth. 311 3883
[36] Stubblefield C T, Eick H and Eyring L J. Am. Chem. Soc. 78 3018
[37] Gazulla M F, Ventura M J, Andreu C, Gilabert J, Orduna M and Rodrigo M 2019 Microchemical. J. 148 291
[38] Shannon R D 1976 Acta. Crystallographica. A A32 751
[39] Xue Y Y, Li N, Hu D H, Song Q S, Xu X D, Wang D H, Wang Q G, Li Z D, Wang Z S and Xu J 2019 Chin. Phys. B 28 087801
[40] Ramos-Brito F, García-Hipólito M, Alejo-Armenta C A, Camarillo E, Hernández J M, Murrieta H O and Falcony C 2008 J. Mater. Sci. 43 4527
[41] Tiseanu C, Parvulescu V, Avram D, Cojocaru B, Apostol N, Vela-Gonzalez A V and Sanchez-Dominguez M 2014 Phys. Chem. Chem. Phys. 16 5793
[42] Flizikowski G A S, Zanuto V S, Novatski A, Nunes L A O, Malacarne L C, Baesso M L and Astrath N G C 2018 J. Lumin. 202 27
[43] Zhao J, Zhao D, Ma M J, Ma Z, Liu B Z, Fan Y C, Duan P G and Bi W Y 2018 Optik 153 58
[44] Xu M J, Li S X, Ji C C, LuoW X and Wang L X 2020 Chin. Phys. B 29 063301
[45] Deng S, Zhang W, Hu Z F, Feng Z Y, Hu P J, Ma L, Sheng X, Pan Y M and Luo L 2018 J. Mater. Sci. 29 9796
[46] Yu R J, Xue N, Wang T, Zhao Z, Wang J, Hei Z F, Li M X, Mi Noh H and Hyun Jeong J 2015 Ceram. Int. 41 6030
[47] Han B, Dai Y Z, Zhang J, Wang X Y, Shi W H and Shi H Z 2018 J. Lumin. 196 275
[48] Som S, Kunti A K, Kumar V, Kumar V, Dutta S, Chowdhury M, Sharma S K, Terblans J J and Swart H C 2014 J. Appl. Phys. 115 193101
[49] Xin S Y, Zhou F G, Wang C, Wang X J, Li Z W, Zhu G and Wang Y H 2019 J. Mol. Struct. 1181 203
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[8] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[9] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[10] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[11] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[12] Laser-modified luminescence for optical data storage
Xin Wei(魏鑫), Weiwei Zhao(赵伟玮), Ting Zheng(郑婷), Junpeng Lü(吕俊鹏), Xueyong Yuan(袁学勇), and Zhenhua Ni(倪振华). Chin. Phys. B, 2022, 31(11): 117901.
[13] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[14] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[15] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
No Suggested Reading articles found!