Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 040302    DOI: 10.1088/1674-1056/28/4/040302
GENERAL Prev   Next  

Novel quantum secret image sharing scheme

Gao-Feng Luo(罗高峰)1,2,3, Ri-Gui Zhou(周日贵)1,3, Wen-Wen Hu(胡文文)1,3
1 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
2 College of Information Engineering, Shaoyang University, Shaoyang 422000, China;
3 Research Center of Intelligent Information Processing and Quantum Intelligent Computing, Shanghai 201306, China
Abstract  

In this paper, we propose a novel quantum secret image-sharing scheme which constructs m quantum secret images into m+1 quantum share images. A chaotic image generated by the logistic map is utilized to assist in the construction of quantum share images first. The chaotic image and secret images are expressed as quantum image representation by using the novel enhanced quantum representation. To enhance the confidentiality, quantum secret images are scrambled into disordered images through the Arnold transform. Then the quantum share images are constructed by performing a series of quantum swap operations and quantum controlled-NOT operations. Because all quantum operations are invertible, the original quantum secret images can be reconstructed by performing a series of inverse operations. Theoretical analysis and numerical simulation proved both the security and low computational complexity of the scheme, which has outperformed its classical counterparts. It also provides quantum circuits for sharing and recovery processes.

Keywords:  quantum image processing      secret image sharing      quantum computation      quantum circuit  
Received:  03 December 2018      Revised:  11 January 2019      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  89.70.-a (Information and communication theory)  
  02.70.-c (Computational techniques; simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: 

Project supported by the National Key Research and Development Plan (Grant Nos. 2018YFC1200200 and 2018YFC1200205), the National Natural Science Foundation of China (Grant No. 61463016), and the “Science and Technology Innovation Action Plan” of Shanghai in 2017 (Grant No. 17510740300).

Corresponding Authors:  Ri-Gui Zhou     E-mail:  rgzhou@shmtu.edu.cn

Cite this article: 

Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文) Novel quantum secret image sharing scheme 2019 Chin. Phys. B 28 040302

[1] Fan H 2018 Acta Phys. Sin. 67 120301 (in Chinese)
[2] Feynman R P 1982 Int. J. Theor. Phys. 21 467
[3] Shor P W 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science pp. 124-134
[4] Grover L K 1996 Proceedings of the 28th Annual ACM symposium on the Theory of Computing pp. 212-219
[5] Beach G, Lomont C and Cohen C 2003 Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop pp. 39-44
[6] Caraiman S and Manta V 2012 IEEE International Conference on System Theory
[7] Le P Q, Dong F and Hirota K 2011 Quantum Inform. Process. 10 63
[8] Zhang Y, Lu K, Gao Y and Wang M 2013 Quantum Inform. Process. 12 2833
[9] Li H S, Zhu Q, Zhou R G, Song L and Yang X 2014 Quantum Inform. Process. 13 991
[10] Jiang N, Wang J and Mu Y 2015 Quantum Inform. Process. 14 4001
[11] Zhou R G, Hu W, Fan P and Ian H 2017 Sci. Rep. 7 2511
[12] Jiang N, Dang Y and Wang J 2016 Quantum Inform. Process. 15 3543
[13] Luo G, Zhou R G, Liu X, Hu W and Luo J 2018 Int. J. Theor. Phys. 57 2447
[14] Li P and Liu X 2018 Int. J. Quantum Inform. 16 1850020
[15] Jiang N, Zhao N and Wang L 2016 Int. J. Theor. Phys. 55 107
[16] Li P and Lu A 2018 Int. J. Theor. Phys. 57 1516
[17] Luo G, Zhou R G, Luo J, Hu W, Zhou Y and Ian H 2019 Quantum Inform. Process. 18 49
[18] Luo G, Zhou R G, Hu W, Luo J, Liu X and Ian H 2018 Quantum Inform. Process. 17 299
[19] Hu W, Zhou R G, Luo J and Liu B 2019 Quantum Inform. Process. 18 16
[20] Qu Z G, He H X and Li T 2018 Chin. Phys. B 27 010306
[21] Yang Y G, Pan Q X, Sun S and Xu P 2015 Sci. Rep. 5 7784
[22] Yang Y G, Tian J, Lei H, Zhou Y H and Shi W M 2016 Inform. Sci. 345 257
[23] Li P and Zhao Y 2017 Int. J. Theor. Phys. 56 1961
[24] Zhou N, Chen W, Yan X and Wang Y 2018 Quantum Inform. Process. 17 137
[25] Yang Y G, Cao W F and Wen Q Y 2010 Chin. Phys. B 19 050306
[26] Zhu Z C, Zhang Y Q and Fu A M 2012 Chin. Phys. B 21 010307
[27] Liang J W, Cheng Z, Shi J J and Guo Y 2016 Int. J. Theor. Phys. 55 2342
[28] Zhu Z C, Hu A Q and Fu A M 2016 Int. J. Theor. Phys. 55 2342
[29] Long G L, Sheng Y B and Yin L G 2018 Physics 47 413 (in Chinese)
[30] Naor M and Shamir A 1995 Lect. Notes Comput. Sci. 950 1
[31] Song X, Wang S, Sang J, Yan X and Niu X 2014 IEEE Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing pp. 215-218
[32] El-latif A A A, Abd-el-atty B and Hossain M S 2018 IEEE Access 6 21075
[33] Zhou R G, Hu W and Fan P 2017 Quantum Inform. Process. 16 212
[34] Jiang N, Wu W Y and Wang L 2014 Quantum Inform. Process. 13 1223
[35] Jiang N and Wang L 2014 Quantum Inform. Process. 13 1545
[36] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[37] Kalamidas D 2005 Phys. Lett. A 343 331
[38] De D B and Ramos R V 2006 Phys. Lett. A 352 206
[39] Barenco A, Bennett C H, Cleve R, Divincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457
[1] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[2] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[3] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[4] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[5] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[6] Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
Xiu-Bo Chen(陈秀波), Li-Yun Zhao(赵立云), Gang Xu(徐刚), Xing-Bo Pan(潘兴博), Si-Yi Chen(陈思怡), Zhen-Wen Cheng(程振文), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(4): 040305.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[9] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[10] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[11] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[12] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[13] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[14] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[15] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
No Suggested Reading articles found!