Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 030602    DOI: 10.1088/1674-1056/28/3/030602
GENERAL Prev   Next  

Pre- and post-selected measurements with coupling-strength-dependent modulation

Zhaoxue Li(李兆雪)1, Jiangdong Qiu(邱疆冬)1, Linguo Xie(谢林果)1, Lan Luo(罗兰)1, Xiong Liu(刘雄)1, Zhiyou Zhang(张志友)1,2, Changliang Ren(任昌亮)3, JingLei Du(杜惊雷)1,2
1 College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;
2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China;
3 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Abstract  

Pre- and post-selected (PPS) measurement, especially the weak PPS measurement, has been proved to be a useful tool for measuring extremely tiny physical parameters. However, it is difficult to retain both the attainable highest measurement sensitivity and precision with the increase of the parameter to be measured. Here, a modulated PPS measurement scheme based on coupling-strength-dependent modulation is presented with the highest sensitivity and precision retained for an arbitrary coupling strength. This idea is demonstrated by comparing the modulated PPS measurement scheme with the standard PPS measurement scheme in the case of unbalanced input meter. By using the Fisher information metric, we derive the optimal pre- and post-selected states, as well as the optimal coupling-strength-dependent modulation without any restriction on the coupling strength. We also give the specific strategy of performing the modulated PPS measurement scheme, which may promote practical application of this scheme in precision metrology.

Keywords:  modulated pre- and post-selected measurements      Fisher information metric      unbalanced input meter  
Received:  07 September 2018      Revised:  24 December 2018      Accepted manuscript online: 
PACS:  06.20.-f (Metrology)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Xa (Optical tests of quantum theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674234 and 11605205), the Fundamental Research Funds for the Central Universities, China (Grant No. 2012017yjsy143), the National Key Research and Development Program of China (Grant No. 2017YFA0305200), the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (Grant No. 2015317), the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2015jcyjA00021 and cstc2018jcyjAX0656), the Entrepreneurship and Innovation Support Program for Chongqing Overseas Returnees, China (Grant No. cx017134), the Fund of CAS Key Laboratory of Microscale Magnetic Resonance, China, and the Fund of CAS Key Laboratory of Quantum Information, China.

Corresponding Authors:  Zhiyou Zhang, Changliang Ren     E-mail:  zhangzhiyou@scu.edu.cn;renchangliang@cigit.ac.cn

Cite this article: 

Zhaoxue Li(李兆雪), Jiangdong Qiu(邱疆冬), Linguo Xie(谢林果), Lan Luo(罗兰), Xiong Liu(刘雄), Zhiyou Zhang(张志友), Changliang Ren(任昌亮), JingLei Du(杜惊雷) Pre- and post-selected measurements with coupling-strength-dependent modulation 2019 Chin. Phys. B 28 030602

[1] Aharonov Y, Bergmann P G and Lebowitz J L 1964 Phys. Rev. B 134 1410
[2] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[3] Zhu X, Zhang Y, Pang S, Qiao C, Liu Q and Wu S 2011 Phys. Rev. A 84 052111
[4] Kofman A G, Ashhab S and Nori F 2012 Phys. Rep. 520 43
[5] Hosten O and Kwiat P 2008 Science 319 787
[6] Kocsis S, Braverman B, Ravets S, Stevens M J, Mirin R P, Shalm L K and Steinberg A M 2010 Science 332 1170
[7] Starling D J, Dixon P B, Jordan A N and Howell J C 2010 Phys. Rev. A 82 063822
[8] Zhou X, Ling X, Luo H and Wen S 2012 Appl. Phys. Lett. 101 251602
[9] Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111 033604
[10] Salazar-Serrano L J, Janner D, Brunner N, Pruneri V and Torres J P 2014 Phys. Rev. A 89 012126
[11] Magaña-Loaiza O S, Mirhosseini M, Rodenburg B and Boyd R W 2014 Phys. Rev. Lett. 112 200401
[12] Qiu X, Zhou X, Hu D, Du J, Gao F, Zhang Z and Luo H 2014 Appl. Phys. Lett. 105 131111
[13] Rhee H, Eom I, Ahn S H, Song K H and Cho M 2015 Phys. Rev. A 91 053839
[14] Qiu J, Ren C and Zhang Z 2016 Phys. Rev. A 93 063841
[15] Zhang Y, Li D, He Y, Shen Z and He Q 2016 Opt. Lett. 41 5409
[16] Luo L, Qiu X, Xie L, Liu X, Li Z, Zhang Z and Du J 2017 Opt. Express 25 21107
[17] Xie L, Qiu X, Luo L, Liu X, Li Z, Zhang Z, Du J and Wang D 2017 Appl. Phys. Lett. 111 191106
[18] Li L, Li Y, Zhang Y L, Yu S, Lu C Y, Liu N L, Zhang J and Pan J W 2018 Phys. Rev. A 97 033851
[19] Huang J Z, Fang C and Zeng G 2018 Phys. Rev. A 97 063853
[20] Yakir A, Sandu P and Jeff T 2010 Phys. Today 63 27
[21] Duck I M, Stevenson P M and Sudarshan E C G 1989 Phys. Rev. D 40 2112
[22] Jozsa R 2007 Phys. Rev. A 76 044103
[23] Tollaksen J, Aharonov Y, Casher A, Kaufherr T and Nussinov S 2010 New J. Phys. 12 013023
[24] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
[25] Brunner N and Simon C 2010 Phys. Rev. Lett. 105 010405
[26] Zhang Z H, Chen G, Xu X Y, Tang J S, Zhang W H, Han Y J, Li C F and Guo G C 2016 Phys. Rev. A 94 053843
[27] Li F, Huang J and Zeng G 2017 Phys. Rev. A 96 032112
[28] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[29] Braunstein S L, Caves C M and Milburn G J 1996 Ann. Phys. 247 135
[30] Pang S and Brun T A 2015 Phys. Rev. Lett. 115 120401
[31] Fisher R A 1925 Math. Proc. Cambridge Philos. Soc. 22 700
[32] Qiu X, Xie L, Liu X, Luo L, Li Z, Zhang Z and Du J 2017 Appl. Phys. Lett. 110 071105
[1] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[2] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[3] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[4] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[5] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[6] A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy
Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃). Chin. Phys. B, 2021, 30(5): 050603.
[7] Calibration of a compact absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(9): 093701.
[8] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[9] Tilt adjustment for a portable absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(7): 073701.
[10] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[11] An Yb-fiber frequency comb phase-locked to microwave standard and optical reference
Hui-Bo Wang(汪会波), Hai-Nian Han(韩海年), Zi-Yue Zhang(张子越), Xiao-Dong Shao(邵晓东), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(3): 030601.
[12] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[13] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[14] Amorphous Si critical dimension structures with direct Si lattice calibration
Ziruo Wu(吴子若), Yanni Cai(蔡燕妮), Xingrui Wang(王星睿), Longfei Zhang(张龙飞), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Tongbao Li(李同保). Chin. Phys. B, 2019, 28(3): 030601.
[15] Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements
Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明). Chin. Phys. B, 2018, 27(4): 040601.
No Suggested Reading articles found!