1 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031, China
Abstract Visibility is an important atmospheric parameter that is gaining increasing global attention. This study introduces a back-propagation neural network method based on genetic algorithm optimization to obtain visibility directly using light detection and ranging (lidar) signals instead of acquiring extinction coefficient. We have validated the performance of the novel method by comparing it with the traditional inversion method, the back-propagation (BP) neural network method, and the Belfort, which is used as a standard value. The mean square error (MSE) and mean absolute percentage error (MAPE) values of the genetic algorithm-optimized back propagation (GABP) method are located in the range of 0.002 km2-0.005 km2 and 1%-3%, respectively. However, the MSE and MAPE values of the traditional inversion method and the BP method are significantly higher than those of the GABP method. Our results indicate that the proposed algorithm achieves better performance and can be used as a valuable new approach for visibility estimation.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.