Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010501    DOI: 10.1088/1674-1056/28/1/010501
GENERAL Prev   Next  

Solitons in nonlinear systems and eigen-states in quantum wells

Li-Chen Zhao(赵立臣)1,2, Zhan-Ying Yang(杨战营)1,2, Wen-Li Yang(杨文力)1,2,3
1 School of Physics, Northwest University, Xi'an 710069, China;
2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069, China;
3 Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  

We study the relations between solitons of nonlinear Schrödinger equation and eigen-states of linear Schrödinger equation with some quantum wells. Many different non-degenerated solitons are re-derived from the eigen-states in the quantum wells. We show that the vector solitons for the coupled system with attractive interactions correspond to the identical eigen-states with the ones of the coupled systems with repulsive interactions. Although their energy eigenvalues seem to be different, they can be reduced to identical ones in the same quantum wells. The non-degenerated solitons for multi-component systems can be used to construct much abundant degenerated solitons in more components coupled cases. Meanwhile, we demonstrate that soliton solutions in nonlinear systems can also be used to solve the eigen-problems of quantum wells. As an example, we present the eigenvalue and eigen-state in a complicated quantum well for which the Hamiltonian belongs to the non-Hermitian Hamiltonian having parity-time symmetry. We further present the ground state and the first exited state in an asymmetric quantum double-well from asymmetric solitons. Based on these results, we expect that many nonlinear physical systems can be used to observe the quantum states evolution of quantum wells, such as a water wave tank, nonlinear fiber, Bose-Einstein condensate, and even plasma, although some of them are classical physical systems. These relations provide another way to understand the stability of solitons in nonlinear Schrödinger equation described systems, in contrast to the balance between dispersion and nonlinearity.

Keywords:  non-degenerated soliton, eigen-states, quantum well, nonlinear Schrö      dinger equation  
Received:  09 October 2018      Revised:  24 October 2018      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11775176), the Basic Research Program of Natural Science of Shaanxi Province, China (Grant No. 2018KJXX-094), the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province, China (Grant No. 2017KCT-12), and the Major Basic Research Program of Natural Science of Shaanxi Province, China (Grant No. 2017ZDJC-32).

Corresponding Authors:  Li-Chen Zhao     E-mail:  zhaolichen3@nwu.edu.cn

Cite this article: 

Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营), Wen-Li Yang(杨文力) Solitons in nonlinear systems and eigen-states in quantum wells 2019 Chin. Phys. B 28 010501

[1] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[2] Kevrekidis P G and D J Frantzeskakis 2016 Rev. Phys. 1 140
[3] Agrawal G P 2007 Nonlinear Fiber Optics (4th Edn.)
[4] Osborne A R 2010 Nonlinear Ocean Waves and the Inverse Scattering Transform (New York: Elsevier)
[5] Kevrekidis P G, Frantzeskakis D J and Carretero-Gonzalez R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (Berlin Heidelberg: Springer)
[6] Chabchoub A, Hoffmann N, Onorato M and Akhmediev N 2012 Phys. Rev. X 2 011015
[7] Kibler B, Chabchoub A, Gelash A, Akhmediev N and Zakharov V E 2015 Phys. Rev. X 5 041026
[8] Becker C, Stellmer S, Panahi P S, Dorscher S, Baumert M, Eva-Maria Richter, Kronjager J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496
[9] Kay I and Moses H E 1956 J. Appl. Phys. 27 1503
[10] Nogami Y and Warke C 1976 Phys. Lett. A 59 251
[11] Akhmediev N and Ankiewicz A 1999 Phys. Rev. Lett. 82 2661
[12] Zhao L C, Ling L, Yang Z Y and Yang W L 2017 Nonlinear Dyn. 88 2957
[13] Mateo A M and Brand J 2014 Phys. Rev. Lett. 113 255302
[14] Akhmediev N and Ankiewicz A 2000 Chaos 10 600
[15] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Berlin: Springer-Verlag)
[16] Doktorov E V and Leble S B 2007 A Dressing Method in Mathematical Physics (Berlin: Springer-Verlag)
[17] Landau L D and Lifshitz E M 1989 Quantum Mechanics (Moscow: Nauka)
[18] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[19] Kanna T and Lakshmanan M 2001 Phys. Rev. Lett. 86 5043
[20] Ling L, Zhao L C and Guo B 2015 Nonlinearity 28 3243
[21] Sheppard A P and Kivshar Y S 1997 Phys. Rev. E 55 4773
[22] Si L G, Yang W X, Lu X Y, Hao X and Yang X 2010 Phys. Rev. A 82 013836
[23] Feng B F 2014 J. Phys. A: Math. Theor. 47 355203
[24] Ohta Y, Wang D S and Yang J 2011 Studies Appl. Math. 127 345
[25] Zakharov V E and Shabat A B 1973 Sov. Phys. JETP 37 823
[26] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[27] Weiner A M, Heritage J P, Hawkins R J, Thurston R N, Kirschner E M, Leaird D E and Tomlinson W J 1988 Phys. Rev. Lett. 61 2445
[28] Christodoulides D N, Coskun T H, Mitchell M, Chen Z and Segev M 1998 Phys. Rev. Lett. 80 5113
[29] Park Q H and Shin H J 2000 Phys. Rev. E 61 3093
[30] Yan D, Chang J J, Hamner C, Hoefer M, Kevrekidis P G, Engels P, Achilleos V, Frantzeskakis D J and Cuevas J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 115301
[31] Zhao L C 2018 Phys. Rev. E 97 062201
[32] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[33] Nixon S, Ge L and Yang J 2012 Phys. Rev. A 85 023822
[34] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[35] Kundu A 1984 J. Math. Phys. 25 3433
[36] Calogero F and Eckhaus W 1987 I. Inv. Prob. 3 229
[37] Geng X G and Tam H W 1999 J. Phys. Soc. Jpn. 68 1508
[38] Chen Y and Yan Z 2016 Sci. Rep. 6 23478
[39] Chen Y, Yan Z, Mihalache D and Malomed B A 2017 Sci. Rep. 7 1257
[40] Dai C Q, Wang Y Y, Fan Y and Yu D G 2018 Nonlinear Dyn. 92 1351
[41] Ankiewicz A, Krolikowski W and Akhmediev N 1999 Phys. Rev. E 59 6079
[42] Charalampidis E G, Wang W, Kevrekidis P G, Frantzeskakis D J and Cuevas-Maraver J 2016 Phys. Rev. A 93 063623
[43] Wang W and Kevrekidis P G 2017 Phys. Rev. E 95 032201
[44] Wang Y Y, Dai C Q, Xu Y Q, Zheng J and Fan Y 2018 Nonlinear Dyn. 92 1261
[45] Yan D, Chang J J, Hamner C, Kevrekidis P G, Engels P, Achilleos V, Frantzeskakis D J, Carretero-Gonzalez R and Schmelcher P 2011 Phys. Rev. A 84 053630
[46] Zhao L C, Ling L, Yang Z Y and Liu J 2016 Nonlinear Dyn. 83 659
[47] Kutuzov V, Petnikova V M, Shuvalov V V and Vysloukh V A 1998 Phys. Rev. E 57 6056
[48] Wen F, Yang Z Y, Liu C, Yang W L and Zhang Y Z 2014 Commun. Theor. Phys. 61 153
[49] Zhang Y Z 2012 J. Phys. A: Math. Theor. 45 065206
[50] Agboola D 2014 J. Math. Phys. 55 052102
[51] Bo X and Gong J 2010 Phys. Rev. A 81 033618
[52] Nguyen J H V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nature Phys. 10 918
[53] Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S A and Cornish S L 2013 Nat. Commun. 4 1865
[54] Medley P, Minar M A, Cizek N C, Berryrieser D and Kasevich M A 2014 Phys. Rev. Lett. 112 060401
[55] Billam T P, Cornish S L and Gardiner S A 2011 Phys. Rev. A 83 041602
[56] Berano T M, Gokroo V, Khamehchi M A, Abroise J D, Frantzeskakis D J, Engles P and Kevrekidis P G 2018 Phys. Rev. Lett. 120 063202
[57] Coskun T H and Christodoulides D N 2000 Phys. Rev. Lett. 84 2374
[58] Onorato M, Residori S, Bortolozzo U, Montina A and Arecchi F T 2013 Phys. Rep. 528 47
[59] Doyon B, Yoshimura T and Caux Jean S 2018 Phys. Rev. Lett. 120 045301
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[8] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[9] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[10] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[11] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[12] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[15] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
No Suggested Reading articles found!