Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097103    DOI: 10.1088/1674-1056/27/9/097103

Pressure effect in the Kondo semimetal CeRu4Sn6 with nontrivial topology

Jiahao Zhang(张佳浩)1,2, Shuai Zhang(张帅)1, Ziheng Chen(陈子珩)2, Meng Lv(吕孟)1,2, Hengcan Zhao(赵恒灿)1,2, Yi-feng Yang(杨义峰)1, Genfu Chen(陈根富)1, Peijie Sun(孙培杰)1
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China

Kondo semimetal CeRu4Sn6 is attracting renewed attention due to the theoretically predicted nontrivial topology in its electronic band structure. We report hydrostatic and chemical pressure effects on the transport properties of single-and poly-crystalline samples. The electrical resistivity ρ(T) is gradually enhanced by applying pressure over a wide temperature range from room temperature down to 25 mK. Two thermal activation gaps estimated from high-and low-temperature windows are found to increase with pressure. A flat ρ(T) observed at the lowest temperatures below 300 mK appears to be robust against both pressure and field. This feature as well as the increase of the energy gaps calls for more intensive investigations with respect to electron correlations and band topology.

Keywords:  CeRu4Sn6      Weyl semimetal      heavy fermion      hydrostatic pressure  
Received:  25 May 2018      Revised:  19 June 2018      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
  72.15.-v (Electronic conduction in metals and alloys)  

Project supported by the Ministry of Science and Technology of China (Grant Nos. 2015CB921303 and 2017YFA0303103), the National Natural Science Foundation of China (Grant Nos. 11474332 and 11774404), and the Chinese Academy of Sciences through the Strategic Priority Research Program (Grant No. XDB07020200).

Corresponding Authors:  Peijie Sun     E-mail:

Cite this article: 

Jiahao Zhang(张佳浩), Shuai Zhang(张帅), Ziheng Chen(陈子珩), Meng Lv(吕孟), Hengcan Zhao(赵恒灿), Yi-feng Yang(杨义峰), Genfu Chen(陈根富), Peijie Sun(孙培杰) Pressure effect in the Kondo semimetal CeRu4Sn6 with nontrivial topology 2018 Chin. Phys. B 27 097103

[1] Riseborough P 2000 Adv. Phys. 49 257
[2] Tomczak J M 2018 J. Phys.:Condens. Matter 30 183001
[3] Allen J W, Batlogg B and Wachter P 1979 Phys. Rev. B 20 4807
[4] Cooley J C, Aronson M C and Canfield P C 1997 Phys. Rev. B 55 7533
[5] Takabatake T, Teshima F, Fujii H, Nishigori S, Suzuki T, Fujita T, Yamaguchi Y, Sakurai J and Jaccard D 1990 Phys. Rev. B 41 9607R
[6] Das I and Sampathkumaran V 1992 Phys. Rev. B 46 4250
[7] Wissgott P and Held K 2016 Eur. Phys. J. B 89 5
[8] Guritanu V, Wissgott P, Weig T, Winkler H, Sichelschmidt J, Schefer M, Prokoev A, Kimura S, Iizuka T, Strydom A M, Dressel M, Steglich F, Held K and Paschen S 2013 Phys. Rev. B 87 115129
[9] Xu Y, Yue C, Weng H M and Dai X 2017 Phys. Rev. X 7 011027
[10] Strydom A M, Guo Z, Paschen S, Viennois R and Steglich F 2005 Physica B 359-361 293
[11] Brüning E M, Brando M, Baenitz B, Bentien A, Strydom A M, Walstedt R E, Steglich F 2010 Phys. Rev. B 82 125115
[12] Xia X B, Shen B, Smidman M, Chen Y, Lee H and Yuan H Q 2018 Chin. Phys. Lett. 35 067102
[13] Sundermann M, Strigari F, Willers T, Winkler H, Prokofiev A, Ablett J M, Rueff J P, Schmitz D, Weschke E, Sala M M, Al-Zein A, Tanaka A, Haverkort M W, Kasinathan D, Tjeng L H, Paschen S and Severing A 2015 Sci. Rep. 5 17937
[14] Kim D J, Xia J and Fisk Z 2014 Nat. Mater. 13 466
[15] Chang P Y, Erten O and Coleman P 2017 Nat. Phys. 13 794
[16] Winkler H, Lorenzer K A, Prokoev A and Paschen S 2012 J. Phys.:Confer. Series 391 012077
[17] Hänel J, Winkler H, Ikeda M, Larrea J J, Martelli V, Prokoev A, Bauer E and Paschen S 2014 J. Ele. Mater. 43 2440
[18] Sawamura T, Kagayama T and Oomi G 1997 Physica B 239 106
[19] There was a confusion on the energy gap Eg of polycrystalline CeRu4Sn6 in literatures, because sometimes the activation energy E_a was referred to as Eg.[6] Note that Ea=Eg/2 on the assumption of a particle-hole symmetric band gap. We employ Eg to characterize the band gap energy in our paper.
[20] Shahrokhvand M, Pezzini S, van Delft M R, Zeitler U, Hussey N E and Wiedmann S 2017 Phys. Rev. B 96 205125
[21] Sengupta K, Iyer K K, Ranganathan R and Sampathkumaran E V 2012 J. Phys. Confer. Series 377 012029
[22] Hundley M F, Canfield P C, Thompson J T, Fisk Z and Lawrence J M 1991 Physica B 171 254
[23] Takabatake T, Nagasawa M, Fujii H, Kido G, Nohara M, Nishigori S, Suzuki T, Fujita T, Helfrich R, Ahlheim U, Fraas K, Geibel C and Steglich F 1992 Phys. Rev. B 45 5740
[24] Sugiyama K, Iga F, Kasaya M, Kasuya T and Date M 1988 J. Phys. Soc. Jpn. 57 3946
[1] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[4] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[5] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[6] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
[7] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[8] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[9] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
[10] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[11] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[12] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[13] Crystal structure and electromagnetic responses of tetragonal GdAlGe
Cong Wang(王聪), Yong-Quan Guo(郭永权), Tai Wang(王泰), and Shuo-Wang Yang(杨硕望). Chin. Phys. B, 2020, 29(12): 127502.
[14] Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2
Zhen Zhu(朱朕), Dong Yan(严冬), Xiao-Ang Nie(聂晓昂), Hao-Ke Xu(徐豪科), Xu Yang(杨旭), Dan-Dan Guan(管丹丹), Shiyong Wang(王世勇), Yao-Yi Li(李耀义), Canhua Liu(刘灿华), Jun-Wei Liu(刘军伟), Hui-Xia Luo(罗惠霞), Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(7): 077302.
[15] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
No Suggested Reading articles found!