Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097102    DOI: 10.1088/1674-1056/27/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Site preferences of alloying transition metal elements in Ni-based superalloy: A first-principles study

Baokun Lu(路宝坤), Chong-Yu Wang(王崇愚), Zhihui Du(都志辉)
1 Department of Physics, Tsinghua University, Beijing 100084, China;
2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Abstract  

Atomistic characterization of chemical element distribution is crucial to understanding the role of alloying elements for strengthening mechanism of superalloy. In the present work, the site preferences of two alloying elements X-Y in γ-Ni of Ni-based superalloy are systematically studied using first-principles calculations with and without spin-polarization. The doping elements X and Y are chosen from the 27 kinds of 3d, 4d, 5d group transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au) and Al. We find that the spin-polarized calculations for Re-Re, Re-Ru, Re-Cr, Ru-Cr show a strong chemical binding affinity between the solute elements and are more consistent with the experimental results. The binding energies of pairs between the 28 elements have an obvious periodicity and are closely related the electronic configuration of the elements. When the d-electrons of the element are close to the half full-shell state, two alloying elements possess attractive binding energies, reflecting the effect of the Hund's rule. The combinations of early transition metals (Sc, Ti, V, Y, Zr, Nb, Hf, Ta) have a repulsive interaction in γ-Ni. These results offer insights into the role of alloying elements for strengthening mechanism of superalloy.

Keywords:  superalloy      transition metal      binding energy      cluster      first-principles calculations  
Received:  19 June 2018      Revised:  28 August 2018      Accepted manuscript online: 
PACS:  71.20.Be (Transition metals and alloys)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: 

Project supported by the National Key R&D Program of China (Grant Nos. 2017YFB0701501, 2017YFB0701502, and 2017YFB0701503).

Corresponding Authors:  Chong-Yu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Baokun Lu(路宝坤), Chong-Yu Wang(王崇愚), Zhihui Du(都志辉) Site preferences of alloying transition metal elements in Ni-based superalloy: A first-principles study 2018 Chin. Phys. B 27 097102

[1] Reed R C 2006 The Superalloys:Fundamentals and Applications (Cambridge:Cambridge University Press)
[2] Pollock T M and Tin S 2006 J. Propulsion Power 22 361
[3] Blavette D, Caron P and Khan T 1986 Scr. Metall. 20 1395
[4] Blavette D, Caron P and Khan T 1988 Sixth Int. Symp. Superalloys-Superalloys 1988 305
[5] Blavette D, Cadel E, Pareige C, Deconihout B and Caron P 2007 Microscopy Microanalysis 13 464
[6] Wanderka N and Glatzel U 1995 Mater. Sci. & Eng. A (Structural Mater.:Properties Microstruct. Process.) A203 69
[7] Rüsing J, Wanderka N, Czubayko U, Naundorf V, Mukherji D and Rösler J 2002 Scr. Mater. 46 235
[8] Mottura A, Miller M K and Reed R C 2008 The 11th International Symposium on Superalloys-Superalloys 2008 Champion, Pennsylvania 2008 891
[9] Mottura A, Warnken M, Miller M K, Finnis M W and Reed R C 2010 Acta Mater. 58 931
[10] Mottura A, Wu R T, Finnis M W and Reed R C 2008 Acta Mater. 56 2669
[11] Mottura A, Finnis M W and Reed R C 2012 Acta Mater. 60 2866
[12] Zhu T, Wang C Y and Gan Y 2010 Acta Mater. 58 2045
[13] Huang M and Zhu J 2016 Rare Met. 35 127
[14] Smith J 1987 Effects of Cr and Re additions upon coarsening and deformation behavior of single-crystal Ni-base model superalloys (Ph. D. Dissertation) (Illinois:Illinois University Urbana)
[15] Chen J Y, Feng Q, Cao L M and Sun Z Q 2011 Mater. Sci. Eng. A 528 3791
[16] Ge B H, Luo Y S, Li J R and Zhu J 2010 Scr. Mater. 63 969
[17] Huang M, Cheng Z Y, Xiong J C, Li J R, Hu J Q, Liu Z L and Zhu J 2014 Acta Mater. 76 294
[18] Yu X X, Wang C Y, Zhang X N, Yan P and Zhang Z 2014 J. Alloys Compd. 582 299
[19] Huang Y Y, Mao Z G, Noebe R D and Seidman D N 2016 Acta Mater. 121 288
[20] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[21] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[28] Luo Y S, Zhang L H, Wang Y M, Ge B H, Guo W, Zhan J, Zhang J X and Zhu J 2016 Philos. Mag. Lett. 96 432
[29] Maisel S B, Schindzielorz N, Mottura A, Reed R C and Müller S 2014 Phys. Rev. B 90 094110
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[9] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[10] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!