Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094218    DOI: 10.1088/1674-1056/27/9/094218
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer using a beam collimator and its application for ultrasonic imaging of seismic physical models

Zhi-Hua Shao(邵志华), Xue-Guang Qiao(乔学光), Feng-Yi Chen(陈凤仪), Qiang-Zhou Rong(荣强周)
School of Physics, Northwest University, Xi'an 710069, China
Abstract  

An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultrasonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FPI shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by reconstructing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.

Keywords:  fiber-optic sensor      Fabry-Perot interferometer      seismic physical model  
Received:  16 May 2018      Revised:  02 July 2018      Accepted manuscript online: 
PACS:  42.81.Pa (Sensors, gyros)  
  07.60.Ly (Interferometers)  
  81.70.Fy (Nondestructive testing: optical methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61735014, 61327012, and 61275088), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 08JZ58), and the Northwest University Graduate Innovation and Creativity Funds, China (Grant No. YZZ17088).

Corresponding Authors:  Qiang-Zhou Rong     E-mail:  qzrong2010@gmail.com

Cite this article: 

Zhi-Hua Shao(邵志华), Xue-Guang Qiao(乔学光), Feng-Yi Chen(陈凤仪), Qiang-Zhou Rong(荣强周) Ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer using a beam collimator and its application for ultrasonic imaging of seismic physical models 2018 Chin. Phys. B 27 094218

[1] Lamont M R E, Okawachi Y and Gaeta A L 2013 Opt. Lett. 38 3478
[2] Bakulin A, Grechka V and Tsvankin I 2000 Geophysics 65 1788
[3] Urosevic M, Bhat G and Grochau M H 2012 Geophysics 77 WC123
[4] Jones C H, Reeg H, Zandt G, Gilbert H, Owens T J and Stachnik J 2014 Geosphere 10 505
[5] Dou S, Nakagawa S, Dreger D and Ajo-Franklin J 2016 Geophysics 81 WA233
[6] Park S and He S 2012 Ultrasonics 52 880
[7] Yamashita K, Nishiumi T, Arai K, Tanaka H and Noda M 2015 Procedia Eng. 120 1205
[8] Culshaw B, Thursby G, Betz D and Sorazu B 2008 IEEE Sens. J. 8 1360
[9] Shao L, Lau S, Dong X, Zhang A, Chan H L W, Tam H Y and He S 2008 IEEE Photon. Technol. Lett. 20 548
[10] Beard P C, Hurrell A M and Mills T N 2000 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 256
[11] Guo J, Xue S, Zhao Q and Yang C 2014 Opt. Express 22 19573
[12] Gang T, Hu M, Qiao X, Li J, Shao Z, Tong R and Rong Q 2017 Opt. Laser Eng. 88 60
[13] Cranch G A, Johnson L, Algren M, Heerschap S, Miller G A, Marunda T S and Holtz R L 2017 Opt. Express 25 19457
[14] Li Y, Wang X and Bao X 2011 Appl. Opt. 50 1873
[15] Chen R, Fernando G F, Butler T and Badcock R A 2004 Meas. Sci. Technol. 15 1490
[16] Wild G and Hinckley S 2008 IEEE Sens. J. 8 1184
[17] Guo F, Fink T, Han M, Koester L, Turner J and Huang J 2012 Opt. Lett. 37 1505
[18] Rong Q, Zhou R, Hao Y, Yin X, Shao Z, Gang T and Qiao X 2017 IEEE Photon. J. 9 6802511
[19] Ma J, Xuan H, Ho H, Jin W, Yang Y and Fan S 2013 IEEE Photon. Technol. Lett. 25 932
[20] Xu J, Wang X, Cooper K L and Wang A 2005 Opt. Lett. 30 3269
[21] Morris P, Hurrell A, Shaw A, Zhang E and Beard P 2009 J. Acoust. Soc. Am. 125 3611
[22] Rong Q, Hao Y, Zhou R, Yin X, Shao Z, Liang L and Qiao X 2017 Sensors 17 397
[23] Xu F, Shi J, Gong K, Li H, Hui R and Yu B 2014 Opt. Lett. 39 2838
[24] Li M, Wang M and Li H 2006 Opt. Express 14 1497
[25] Gong S C and Lee C 2001 IEEE Sens. J. 1 340
[26] Eaton W P and Smith J H 1997 Smart Mater. Struct. 6 530
[27] Zhang W, Wang R, Rong Q, Qiao X, Guo T, Shao Z, Li J and Ma W 2017 IEEE Photon. J. 9 7103208
[28] Li Z, Pei L, Dong B, Ma C and Wang A 2012 Appl. Opt. 51 4709
[29] Zhang E and Beard P 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 1330
[30] Wang R, Liu Z and Qiao X 2016 Sens. Actuators B Chem. 234 498
[31] Zhang Y, Li Y, Wei T, Lan X, Huang Y, Chen G and Xiao H 2010 IEEE Photon. J. 2 469
[32] Wang R, Zhang J, Weng Y, Rong Q, Ma Y, Feng Z, Hu M and Qiao X 2013 IEEE Sens. J. 13 1766
[33] Rong Q, Qiao X, Du Y, Feng D, Wang R, Ma Y, Sun H, Hu M and Feng Z 2013 Appl. Opt. 52 1441
[34] Du Y, Qiao X, Rong Q, Yang H, Feng D, Wang R, Hu M and Feng Z 2014 IEEE Sens. J. 14 1069
[35] Xu J, Pickrell G, Wang X, Peng W, Cooper K and Wang A 2005 IEEE Photon. Technol. Lett. 17 870
[36] Beard P C and Mills T N 1996 Appl. Opt. 35 663
[37] Shao Z, Rong Q, Chen F and Qiao X 2018 Opt. Express 26 10820
[38] Zhang Y, Lin B, Tjin S C, Zhang H, Wang G, Shum P and Zhang X 2010 Opt. Express 18 26345
[39] Yang S, Liu Y, Chen W, Jin W, Zhou J, Zhang H and Zakharova G S 2016 Sens. Actuators B 226 478
[40] Wang T, Guo Y, Wan P, Zhang H, Chen X and Sun X 2016 Small 12 3748
[41] Xiang Y, Dai X, Guo J, Zhang H, Wen S and Tang D 2015 Sci. Rep. 4 5483
[42] Zhang W, Chen F, Ma W, Rong Q, Qiao X and Wang R 2018 Opt. Express 26 11025
[43] Rong Q, Shao Z, Yin X, Gang T, Liu F, Sun A and Qiao X 2017 IEEE J. Sel. Top. Quantum Electron. 23 5600506
[44] Gang T, Hu M, Rong Q, Qiao X, Liang L, Liu N, Tong R, Liu X and Bian C 2016 Sensors 16 2125
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[4] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[5] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[6] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[7] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[8] Wavelength and sensitivity tunable long period gratings fabricated in fluid-cladding microfibers
Wa Jin(金娃), Linke Zhang(张林克), Xiang Zhang(张祥), Ming Xu(徐铭), Weihong Bi(毕卫红), and Yuefeng Qi(齐跃峰). Chin. Phys. B, 2022, 31(1): 014207.
[9] Ultra-longer fiber cantilever taper for simultaneous measurement of temperature and relative humidity
Min Li(李敏), Jiwen Yin(尹辑文), Weili Yan(闫伟丽), Aimin Cong(丛爱民), Hongjuan Li(李红娟), and Wenqiang Ma(马文强). Chin. Phys. B, 2021, 30(11): 114210.
[10] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[11] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[12] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[13] Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology
Khasan S Karimov, Fahmi F Muhammadsharif, Zubair Ahmad, M Muqeet Rehman, and Rashid Ali. Chin. Phys. B, 2021, 30(1): 014703.
[14] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[15] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
No Suggested Reading articles found!